Highlight Research

27 Hi! PARIS Papers Accepted at ICML 2025

From July 13 to 19, Hi! PARIS researchers will take part in the International Conference on Machine Learning (ICML 2025), one of the world’s leading conferences in artificial intelligence, held this year in Vancouver, Canada.

A total of 27 research papers from Hi! PARIS affiliated teams have been accepted following ICML’s highly selective peer-review process, recognizing the excellence and innovation of our researchers across partner institutions.

This strong presence reflects Hi! PARIS’s scientific leadership and deep engagement in frontier AI research. The accepted papers span a wide array of domains, including machine learning theory, optimization, generative models, privacy, and multi-agent systems, and demonstrate the center’s interdisciplinary strength.

By contributing to ICML 2025’s core sessions and workshops, Hi! PARIS reaffirms its commitment to advancing AI research for science, business, and society at the highest international level.

Congratulations to our researchers!

Here is a list of papers accepted at ICML 2025 that include at least one author affiliated with Hi! PARIS:

Title Hi! PARIS Authors All Authors
Branches: Efficiently Seeking Optimal Sparse Decision Trees via AO*Albert Bifet, Jesse ReadAyman Chaouki, Jesse Read, Albert Bifet
To Each Metric Its DecodingThomas Bonald, Matthieu LabeauRoman Plaud, Alexandre Perez-Lebel, Matthieu Labeau, Antoine Saillenfest, Thomas Bonald
Scaling Laws for ForgettingMarco CuturiLouis Béthune, David Grangier, Dan Busbridge, Eleonora Gualdoni, Marco Cuturi, Pierre Ablin
Shielded DiffusionMarco CuturiMichael Kirchhof, James Thornton, Louis Béthune, Pierre Ablin, Eugene Ndiaye, Marco Cuturi
Misspecification in Simulation-based InferenceMarco CuturiAntoine Wehenkel, Juan L. Gamella, Ozan Sener, Jens Behrmann, Guillermo Sapiro, Jörn Jacobsen, Marco Cuturi
TabICLGael VaroquauxJingang QU, David Holzmüller, Gael Varoquaux, Marine Le Morvan
Byzantine Robust GossipAymeric DieuleveutRenaud Gaucher, Aymeric Dieuleveut, Hadrien Hendrikx
Scaffold with Stochastic GradientsAymeric Dieuleveut, Alain Oliviero Durmus, Eric MoulinesPaul Mangold, Alain Oliviero Durmus, Aymeric Dieuleveut, Eric Moulines
Compressed and Distributed Least-SquaresAymeric DieuleveutConstantin Philippenko, Aymeric Dieuleveut
Discrete Markov Probabilistic ModelsAlain Oliviero DurmusLe Tuyet Nhi PHAM, Dario Shariatian, Antonio Ocello, Giovanni Conforti, Alain Oliviero Durmus
Prediction-Aware LearningAlain Oliviero Durmus, Eric MoulinesAymeric Capitaine, Etienne Boursier, Eric Moulines, Michael Jordan, Alain Oliviero Durmus
Mixture-Based Framework for Diffusion ModelsAlain Oliviero Durmus, Eric MoulinesYazid Janati el idrissi, Badr MOUFAD, Mehdi Qassime, Alain Oliviero Durmus, Eric Moulines, Jimmy Olsson
Differential Privacy for MCMCAlain Oliviero DurmusAndrea Bertazzi, Tim Johnston, Gareth Roberts, Alain Oliviero Durmus
Asymmetric Actor-Critic AlgorithmsDamien ErnstGaspard Lambrechts, Damien Ernst, Aditya Mahajan
Score-Based Generative Models in W2Marta Gentiloni SilveriMarta Gentiloni Silveri, Antonio Ocello
Sliced-Wasserstein Distance AnalysisAnna KorbaChristophe Vauthier, Anna Korba, Quentin Mérigot
Density Ratio EstimationAnna KorbaHanlin Yu, Arto Klami, Aapo Hyvarinen, Anna Korba, Lemir Omar Chehab
Wasserstein Gradient FlowsAnna KorbaClément Bonet, Christophe Vauthier, Anna Korba
Learning of Continuous Markov SemigroupsKarim LouniciVladimir Kostic, Karim Lounici, Hélène Halconruy, Timothée Devergne, Pietro Novelli, Massimiliano Pontil
GNN with GMM AugmentationJohannes Lutzeyer, Michalis VazirgiannisYassine Abbahaddou, Fragkiskos Malliaros, Johannes Lutzeyer, Amine Aboussalah, Michalis Vazirgiannis
TRPO in Mean Field GamesEric MoulinesAntonio Ocello, Daniil Tiapkin, Lorenzo Mancini, Mathieu Lauriere, Eric Moulines
Conditional Coverage with Conformity ScoresEric MoulinesVincent Plassier, Alexander Fishkov, Victor Dheur, Mohsen Guizani, Souhaib Ben Taieb, Maxim Panov, Eric Moulines
Efficient On-Device LearningVan-tam Nguyen, Enzo TartaglioneLe-Trung Nguyen, Aël Quélennec, Van-Tam Nguyen, Enzo Tartaglione
Pareto-Optimality in One-Max-SearchVianney PerchetZiyad Benomar, Lorenzo Croissant, Vianney Perchet, Spyros Angelopoulos
Last Iterate Convergence for Uncoupled LearningVianney PerchetCôme Fiegel, Pierre Menard, Tadashi Kozuno, Michal Valko, Vianney Perchet
Quantifying Treatment EffectsErwan ScornetAhmed Boughdiri, Julie Josse, Erwan Scornet
Prediction via Shapley Value RegressionMichalis VazirgiannisAmr Alkhatib, Roman Bresson, Henrik Boström, Michalis Vazirgiannis