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Abstract

With large-scale integration of renewable generation and distributed energy resources,
modern power systems are confronted with new operational challenges, such as grow-
ing  complexity,  increasing  uncertainty,  and aggravating  volatility.  Meanwhile,  more
and more data are becoming available owing to the widespread deployment of smart
meters, smart sensors, and upgraded communication networks. As a result, data-driven
control techniques, especially reinforcement learning (RL), have attracted surging at-
tention in recent years.  This paper provides a comprehensive review of various RL
techniques and how they can be applied to decision-making and control in power sys-
tems. In particular, we select three key applications, i.e., frequency regulation, voltage
control, and energy management, as examples to illustrate RL-based models and solu-
tions. We then present the critical issues in the application of RL, i.e., safety, robustness,
scalability, and data. Several potential future directions are discussed as well.

Index Terms: Frequency regulation, voltage control, energy management,
reinforcement learning, smart grid.

NOMENCLATURE

-A Notations

[]

Action space, action.

⊆ � ×�, the set of lines connecting buses.

Expected total discounted reward.

:= {1,⋯,�}, the set of buses in a power network or the set of agents.

Neural network with input � and parameter �.

Observation.

Transition probability.

�-function (or �-value) under policy �.

Reward.

State space, state.

:= {0, 1,⋯,�}, the discrete time horizon.

Discounting factor.

The set of probability distributions over set �.

The time interval in �.

Policy, optimal policy.

-B Abbreviations

[]

Asynchronous Advantaged Actor Critic.

Area Control Error.

Advanced Metering Infrastructure.

Artificial Neural Network.

Deep Deterministic Policy Gradient.

Distributed Energy Resource.

Dynamic Programming.

(Deep) Reinforcement Learning.

Deep � Network.

Energy Management System.

Electric Vehicle.

Frequency Regulation.

Heating, Ventilation, and Air Conditioning.

Integrated Energy System.

Least-Squares Policy Iteration.

Long-Short Term Memory.

Markov Decision Process.

On-Load Tap Changing Transformer.

Optimal Power Flow.

Phasor Measurement Unit.

Photovoltaic.

Soft Actor Critic.

Supervisory Control and Data Acquisition.

Static Var (Reactive Power) Compensator.

Temporal Difference.

Upper Confidence Reinforcement Learning.

I INTRODUCTION

Electric  power  systems  are  undergoing  an  architectural  transformation  to  become
more sustainable,  distributed,  dynamic,  intelligent,  and open. On the one hand, the
proliferation of renewable generation and distributed energy resources (DERs), includ-
ing solar energy, wind power, energy storage, responsive demands, electric vehicles
(EVs), etc., creates severe operational challenges. On the other hand, the deployment of
information, communication, and computing technologies throughout the electric sys-
tem, such as phasor measurement units  (PMUs),  advanced metering infrastructures
(AMIs), and wide area monitoring systems (WAMS) [1], has been growing rapidly in re-
cent decades. It evolves traditional power systems towards smart grids and offers an
unprecedented  opportunity  to  overcome  these  challenges  through  real-time  data-
driven  monitoring  and  control  at  scale.  This  will  require  new  advanced  decision-
making and control techniques to manage

1) Growing complexity. The deployment of massive DERs and the interconnection of
regional  power  grids  dramatically  increase  system  operation  complexity  and
make it difficult to obtain accurate system (dynamical) models.

2) Increasing uncertainty. The rapid growth of renewable generation and responsive
loads significantly  increases  uncertainty,  especially  when human users  are in-
volved, jeopardizing predictions and system reliability.

3) Aggravating  volatility.  The  high  penetration  of  power  electronics  converter-
interfaced devices reduces system inertia, which leads to faster dynamics and ne-
cessitates advanced controllers with online adaptivity.

In particular, reinforcement learning (RL) [2], a prominent machine learning paradigm
concerned with how agents take sequential actions in an uncertain interactive environ-
ment and learn from the feedback to optimize a specific performance, can play an im-
portant  role  in  overcoming  these  challenges.  Leveraging  artificial  neural  networks
(ANNs) for function approximation, deep RL (DRL) [3] is further developed to solve
large-scale online decision problems. The most appealing virtue of (D)RL is its model-
free nature, i.e., it makes decisions without explicitly estimating the underlying models.
Hence, (D)RL has the potential to capture hard-to-model dynamics and could outper-
form model-based methods in highly complex tasks. Moreover, the data-driven nature
of (D)RL allows it to adapt to real-time observations and perform well in uncertain dy-
namical environments. Over the past decade, (D)RL has achieved great success in a
broad spectrum of applications, such as playing games [4], robotics [5],  autonomous
driving [6], clinical trials [7], etc.

Meanwhile, the application of RL in power system operation and control has attracted
surging attention [8, 9, 10, 11]. RL-based decision-making mechanisms are envisioned
to compensate for the limitations of  existing model-based approaches and thus are
promising to address the emerging challenges described above. This paper provides a
review and survey on RL-based decision-making in smart grids. We will introduce vari-
ous RL terminologies, exemplify how to apply RL to power systems, and discuss critical
issues in their application. Compared with recent review articles [8, 9, 10, 11] on this
subject, the main merits of this paper include

1) We present a comprehensive and structural overview of the RL methodology, from
basic concepts and theoretical fundamentals to state-of-the-art RL techniques.

2) Three key applications are selected as examples to illustrate the overall procedure
of applying RL to the control and decision-making in power systems, from model-
ing, solution, to numerical implementation.

3) We discuss the critical challenges and future directions for applying RL to power
system problems in depth.

In the rest of this paper, Section II presents a comprehensive overview of the RL funda-
mentals and the state-of-the-art RL techniques. Section III describes the application of
RL to three critical power system problems, i.e., frequency regulation, voltage control,
and energy management, where paradigmatic mathematical models are provided for
illustration. Section IV summarizes the key issues of safety, robustness, scalability, and
data,  and then discusses  several  potential  future  directions.  Lastly,  we conclude  in
Section V.

II PRELIMINARIES ON REINFORCEMENT LEARNING

This section provides a comprehensive overview of the RL methodology. First, we set
up the RL problem formulation and key concepts,  such as �-function  and  Bellman
(Optimality) Equation. Then two categories of classical RL algorithms, i.e., value-based
and policy-based, are introduced. With these fundamentals in place, we next present
several  state-of-the-art  RL  techniques,  including  DRL,  deterministic  policy  gradient,
modern actor-critic methods, multi-agent RL, etc. The overall structure of RL methodol-
ogy with related literature is illustrated in Fig. 1.

Figure 1: The structure of the RL methodology with related literature.

II-A Fundamentals of Reinforcement Learning

RL is a branch of machine learning concerned with how an agent makes sequential de-
cisions  in  an  uncertain  environment  to  maximize  the  cumulative  reward.
Mathematically, the decision-making problem is modeled as a Markov Decision Process
(MDP), which is defined by state space �, action space �, the transition  probability
function ℙ(⋅ | �, �) : � × � → Δ(�) that maps a state-action pair (�, �) ∈ � × � to a distribu-

tion on the state space, and lastly the reward function �(�, �) : � × � → ℝ

. The state space � and action space � can be either discrete or continuous. To simplify
discussion, we focus on the discrete case below.

Figure 2: Illustration of a Markov Decision Process.

As illustrated in Fig. 2, in an MDP setting, the environment starts with an initial state
�� ∈ �.  At  each  time  �={0, 1,⋯},  given  current  state  �� ∈ �,  the  agent  chooses  action
�� ∈ � and receives reward �(��,��) that depends on the current state-action pair (��,��),
after which the next state ��+�  is randomly generated from the transition probability
ℙ(��+� | ��,��). A policy �(� | �) ∈ Δ (�) for the agent is a map from the state � to a distri-

bution on the action space �, which rules what action to take given a certain state �.

The agent aims to find an optimal policy �* (may not be unique) that maximizes the ex-
pected infinite horizon discounted reward �(�):

�* ∈ arg max
�
�(�) = ������

�� �
�=�

�

���(��,��),

where the first expectation means that ��  is drawn from an initial state distribution �
�
,

and the second expectation means that the action ��  is taken according to the policy
�(⋅ | ��). Parameter � ∈ (0, 1) is the discounting factor that penalizes the rewards in the
future.

In the MDP framework, the so-called “model” specifically refers to the reward function
� and the transition probability ℙ. Accordingly, it leads to two different problem set-
tings:

• When the model is known, one can directly solve for an optimal policy �* by Dynamic
Programming (DP) [12].

• When the model is unknown, the agent learns an optimal policy �* based on the past
observations from interacting with the environment, which is the problem of RL.

Since DP lays the foundation for RL algorithms, we first consider the case with a known
model and introduce the basic ideas of finding an optimal policy �* with respect to (1).
The crux is the concept of �-function together with the Bellman Equation. The �-func-
tion �� : � × � → ℝ for a given policy � is defined as

��(�, �) = ��� �
�=�

�

���(��,��) | �� = �, �� = ��,

which is the expected cumulative reward when the initial state is �, the initial action is
�, and all the subsequent actions are chosen according to policy �. The �-function ��

satisfies the following Bellman Equation: ∀(�, �) ∈ � × �,

��(�, �) = �(�, �) + ������(� | ���)�����(� | ��)��(�
�,��),

where the expectation denotes that the next state �� is drawn from ℙ(⋅ | �, �),  and the
next action �� is drawn from �(⋅ | ��). Here, it is helpful to think of the �-function as a
large table or vector filled with �-values ��(�, �). The Bellman Equation (3) indicates a

recursive relation that each �-value equals the immediate reward plus the discounted
future value. Computing the �-function for a given policy � is called policy evaluation,
which can be done by simply solving a set of linear equations when the model, i.e., ℙ
and �, is known.

The �-function associated with an optimal policy �* for (1) is called an optimal �-func-
tion and denoted as �*. The key to find �* is that the optimal �-function must be the
unique solution to the Bellman Optimality Equation (4): ∀(�, �) ∈ � × �,

�*(�, �) = �(�, �) + ������(� | ���) max
����

�*(��,��).

Interested readers are referred to textbook [12, Sec. 1.2] on why this is true. Based on
the Bellman Optimality Equation (4), the optimal �-function �* and an optimal policy �*

can be solved using DP or linear programming [12, Sec. 2.4]. In particular, policy itera-
tion and value iteration are two classic DP algorithms. See [2, Chapter 4] for details.

Remark 1. (Modeling Issues with MDP). MDP is a generic framework to model sequen-
tial decision-making problems and is the basis for RL algorithms. However, several is-
sues deserve attention when modeling power system control problems in the MDP
framework.

1) At the heart of MDP is the Markov property that the distribution of future states de-
pends only on the present  state  and action,  i.e.,  ℙ(��+� | ��,��).  In  other  words,
given the present, the future does not depend on the past. Then for a specific con-
trol problem, one needs to check whether the choices of state and action satisfy
the Markov property. A general guideline is to include all necessary known infor-
mation in the enlarged state, known as state augmentation [12], to maintain the
Markov property, however, at the cost of complexity.

2) Most classical MDP theories and RL algorithms are based on discrete-time transi-
tions, but many power system control problems follow continuous-time dynamics,
such as frequency regulation. To fit the MDP framework, continuous-time dynam-
ics are generally discretized with a proper temporal resolution, which is a com-
mon issue for digital control systems, and there are well-established frameworks
to deal with it. Besides, there are RL variants that are built directly on continuous-
time dynamics, such as integral RL [13].

3) Many MDP/RL methods assume time-homogeneous state transitions and rewards.
But in power systems, there are various time-varying exogenous inputs and dis-
turbances, making the state transitions not time-homogeneous. This is an impor-
tant problem that has not been adequately explored in the existing power litera-
ture and needs further study. Nonstationary MDP [14] and related RL algorithms [
15] could be the potential directions.

In addition, the issues of continuous state/action spaces and partial observability for
MDP modeling will be discussed later.

II-B Classical Reinforcement Learning Algorithms

This subsection considers the RL setting when the environment model is unknown, and
presents classical RL algorithms for finding the optimal policy �*. As shown in Fig. 1, RL
algorithms can be divided into two categories, i.e., model-based and model-free. “Model-
based” refers to the RL algorithms that explicitly estimate and online update an envi-
ronment model from past observations and make decisions based on this model [16],
such as upper confidence RL (UCRL) [17] and Thompson sampling [18].  In contrast,
“model-free” means that the RL algorithms directly search for optimal policies without
estimating the environment model. Model-free RL algorithms are mainly categorized
into two types, i.e., value-based and policy-based.  Generally, value-based methods are
preferred for modest-scale RL problems with finite state/action space as they do not as-
sume a policy class  and have a strong convergence guarantee.  The convergence of
value-based methods to an optimal �-function in the tabular setting (without function
approximation) was proven back in the 1990s [19]. In contrast, policy-based methods
are more efficient for problems with high dimensions or continuous action/state space.
But they are known to suffer from various convergence issues,  e.g.,  local optimum,
high variance,  etc.  The convergence  of  policy-based methods  with  restricted  policy
classes to the global optimum has been shown in a recent work [20] under the tabular
policy parameterization.

Remark 2. (Exploration vs. Exploitation). A fundamental problem faced by RL algo-
rithms is the dilemma between exploration and exploitation. Good performance re-
quires taking actions adaptively to strike an effective balance between 1) exploring
poorly-understood actions to gather new information that may improve future reward,
and 2) exploiting what is known for decision-making to maximize immediate reward.
Generally, it is natural to achieve exploitation with the goal of reward maximization,
while different RL algorithms encourage exploration in different ways. For value-based
RL algorithms, �-greedy is commonly used with a probability of � to explore random ac-
tions. In policy-based methods, exploration is usually achieved by injecting random
perturbation to the actions, adopting a stochastic policy, or adding an entropy term to
the objective, etc.

Before  presenting  classical  RL  methods,  we  introduce  a  key  algorithm,  Temporal-
Difference (TD) learning [21], for policy evaluation when the model is unknown. TD
learning is central to both value-based and policy-based RL algorithms. It learns the
�-function ��  for a given policy �  from episodes of  experience.  Here,  an “episode”

refers  to  a  state-action-reward trajectory over time (��,��, ��, ��,��, ��,⋯)  until  termi-
nated. Specifically, TD learning maintains a �-function �(�, �) for all state-action pairs
(�, �) ∈ � × � and updates it upon a new observation (��, ��+�,��+�) by

�(��,��) ← �(��,��)

+�(�� + ��(��+�,��+�) − �(��,��)),

where � is the step size. Readers might observe that the second term in (5) is very simi-
lar to the Bellman Equation (3),  which is  exactly  the rationale behind TD learning.
Essentially,  TD  learning  (5)  is  a  stochastic  approximation  scheme  for  solving  the
Bellman Equation (3) [22], and can be shown to converge to the true ��  under mild as-

sumptions [21, 23].

1) Value-based RL algorithms directly learn the optimal �-function �*, and the optimal
(deterministic) policy �*  is a byproduct that can be retrieved by acting greedily, i.e.,
�*(�) = arg max��� �*(�, �). Among many, �-learning [24, 19] is perhaps the most popu-
lar value-based RL algorithm. Similar to TD-learning, �-learning maintains a �-func-
tion and updates it towards the optimal �-function based on episodes of experience.
Specifically, at each time �, given current state ��, the agent chooses action ��  according

to a certain behavior policy.

Upon observing the outcome (��, ��+�), �-learning updates the �-function by

�(��,��) ← �(��,��)

+�(�� + � max
����

�(��+�,�
�) − �(��,��)).

The rationale behind (6) is that the �-learning algorithm (6) is essentially a stochastic
approximation scheme for solving the Bellman Optimality Equation (4), and one can
show the convergence to �* under mild assumptions [19, 25].

SARSA

[26] is another classical value-based RL algorithm, whose name comes from the experi-
ence sequence (�, �, �, ��,��).  SARSA is actually an on-policy  variant of �-learning.  The
major difference is that SARSA takes actions according to the target policy (typically
�-greedy based on the current �-function) rather than any arbitrary behavior policy in
�-learning.  The  following  remark distinguishes  and compares  “on-policy”  and “off-
policy” RL algorithms.

Remark 3. (On-Policy vs. Off-Policy). On-policy RL methods continuously improve a pol-
icy (called target policy) and implement this policy to generate episodes for algorithm
training. In contrast, off-policy RL methods learn a target policy based on the episodes
that are generated by following a different policy (called behavior policy) rather than
the target policy itself. In short, “on” and “off” indicate whether the training samples
are generated by following the target policy or not. For example, �-learning is an off-
policy RL method as the episodes used in training can be produced by any policies, and

the actor-critic algorithm described below is on-policy.

For power system applications, control policies that are not well-trained are generally
not allowed to be implemented in real-world power grids for the sake of safety. Thus
off-policy RL is preferred when high-fidelity simulators are unavailable since it can
learn from the vast amount of operational data generated by incumbent controllers.
Off-policy RL is also relatively easy to provide a safety guarantee due to the flexibility
in choosing the behavior policies, but it is known to suffer from slower convergence
and higher sample complexity.

2) Policy-based RL algorithms restrict the optimal policy search to a policy class that is
parameterized as ��  with the parameter � ∈ Θ ⊆ ℝ�.  With this parameterization, the
objective (1) can be rewritten as a function of the policy parameter, i.e., �(�), and the RL
problem is reformulated as an optimization problem (7) that aims to find the optimal
�*:

�* ∈ arg max
���

�(�).

To  solve  (7),  a  straightforward  idea  is  to  employ  the  gradient  ascent  method,  i.e.,
� ← � + �∇ �(�), where � is the step size. However, computing the gradient ∇ �(�)  was
supposed  to  be  intrinsically  hard  as  the  environment  model  is  unknown.  Policy
Gradient Theorem [28] is a big breakthrough in addressing the gradient computation is-
sue. This theorem shows that the policy gradient ∇ �(�) can be simply expressed as

∇ �(�) = �
���

�
�
(�) �

���

��(� | �)���
(�, �)∇� ln��(� | �).

Here, �
�
(�) ∈ Δ (�) is the on-policy state distribution [2, Chapter 9.2], which denotes the

fraction of time steps spent in each state � ∈ �. Equation (8) is for a stochastic policy
� ∼ ��(⋅ | �),  while  the  version of  policy  gradient  theorem for  a  deterministic  policy
� = ��(�) [29] will be discussed later.

The policy gradient theorem provides a highway to estimate the gradient ∇ �(�), which
lays the foundation for policy-based RL algorithms. In particular, the actor-critic algo-
rithm is a prominent and widely used architecture based on policy gradient. It com-
prises two eponymous components: 1) the “critic” is to estimate the �-function ���

(�, �),

and 2) the “actor” conducts the gradient ascent based on (8). The following iterative
scheme is an illustrative actor-critic example:

1) Given state �, take action � ∼ ��(� | �), then observe the reward � and next state ��;

2) (Critic) Update �-function ���
(�, �) by TD learning;

3) (Actor) Update policy parameter � by

� ← � + ����
(�, �)∇� ln��(� | �);

4) � ← ��. Go to step 1) and repeat.

There are many actor-critic variants with different implementation manners, e.g., how
� is sampled from �

�
(�), how �-function is updated, etc. See [2, Chapter 13] for more de-

tails.

We emphasize that the algorithms introduced above are far from complete. In the next
subsections, we will introduce the state-of-the-art modern (D)RL techniques that are
widely used in complex control tasks, especially for power system applications. At last,
we close this subsection with the following two remarks on different RL settings.

Remark 4. (Online RL vs. Batch RL). The algorithms introduced above are referred to
as “online RL” that takes actions and updates the policies simultaneously. In contrast,
there is another type of RL called “batch RL” [30], which decouples the sample data col-
lection and policy training. Precisely, given a set of experience episodes generated by
following any arbitrary behavior policies, batch RL fits the optimal �-function or opti-
mizes the target policy entirely based on this fixed sample dataset. Some classical batch
RL algorithms include Fitted �-Iteration [31], Least-Squares Policy Iteration (LSPI) [32],
etc. For example, given a batch of transition experiences � := {(��,��, ��, ��

�)
�=�

�
}, Fitted

�-Iteration, which is seen as the batch version of �-learning, aims to fit a parameter-
ized �-function ��(�, �) by iterating the following two steps:

1) Create the target �-value �
�
 for each sample in � by

�
�
= �� + �max

��
��(��

�,��).

2) Apply regression approaches to  fit  a  new ��(�, �)  based on the training dataset

(��,��; ��)�=�

� .

The crucial advantages of batch RL lie in the stability and data-efficiency of the learn-
ing process by making the best use of the available sample datasets. However, because
of relying entirely on a given dataset, the lack of exploration is one of the major prob-
lems of batch RL. To encourage exploration, batch RL typically iterates between ex-
ploratory sample collection and policy learning prior to application. Besides, pure
batch RL, also referred to as “offline RL” [33], has attracted increasing recent attention,
which completely ignores the exploration issue and aims to learn policies fully based
on a static dataset with no online interaction. Offline RL assumes a sufficiently large
and diverse dataset that adequately covers high-reward transitions for learning good
policies and turns the RL problem into a supervised machine learning problem. See [34
] for a tutorial of offline RL.

Remark 5. (Passive RL, Active RL, and Inverse RL). The terminology “passive RL” typi-
cally refers to the RL setting where the agent acts by following a fixed policy � and
aims to learn how good this policy is from observations. It is analogous to the policy
evaluation task, and TD learning is one of the representative algorithms of passive RL.
In contrast, “active RL” allows the agent to update policies with the goal of finding an
optimal policy, which is basically the standard RL setting that we described above.
However, in some references, e.g., [35, 36], “active RL” has a completely different mean-
ing and refers to the RL variant where the agent does not observe the reward unless it
pays a query cost to account for the difficulty of collecting reward feedback. Thus, the
agent chooses both an action and whether to observe the reward at each time. Another
interesting RL variant is “inverse RL” [37, 38], in which the state-action sequence of an
(expert) agent is given, and the task is to infer the reward function that this agent seeks
to maximize. Inverse RL is motivated by various practical applications where the re-
ward engineering is complex or expensive and one can observe an expert demonstrat-
ing the task to learn how to perform, e.g., autonomous driving.

II-C Fundamentals of Deep Learning

This subsection presents the fundamentals of deep learning to set the stage for the in-
troduction of DRL. Deep learning refers to the machine learning technique that models
with multi-layer ANNs. The history of ANNs dates back to 1940s [39], and it has re-
ceived tremendous interests in the recent decade due to the booming of data technol-
ogy and computing power, which allows efficient training of wider and deeper ANNs.
Essentially, an ANN is an universal parameterized mapping � = NN(�;�) from the input
features � to the outputs � with the parameters �. As illustrated in Fig. 3, an input fea-
ture vector � is taken in by the input layer, then is processed through a series of hidden
layers, and results in the output vector �. Each hidden layer consists of a number of
neurons that are the activation functions, e.g. linear, ReLU, or sigmoid [40]. Based on a
sample dataset (��, ��)

�=�����
, the parameter � can be optimized via regression. A land-

mark in training ANNs is the discovery of the back-propagation method, which offers
an efficient way to compute the gradient of the loss function over � [41]. Nevertheless,
it is pretty tricky to train large-scale ANNs in practice, and article [41]  provides an
overview of the optimization algorithms and theory for training ANNs. Three typical
classes of ANNs with different architectures are introduced below. See book [42] for
details.

Figure 3: Illustration of a regular four-layer feed-forward ANN [43].

1) Convolutional Neural Networks (CNNs) are in the architecture of feed-forward neural
networks (as shown in Fig. 3) and specialize in pattern detection, which are powerful
for image analysis and computer vision tasks. The convolutional hidden layers are the
basis at the heart of a CNN. Each neuron � = 1, 2,⋯ in a convolutional layer defines a
small filter (or kernel) matrix ��  of low dimension (e.g., 3 × 3) and convolves with the
input  matrix  �  of  relatively  high  dimension,  which  leads  to  the  output  matrix

�� = �� ⊗ � . Here, ⊗ denotes the convolution operator

, and the output (��)�=�����
 is referred to as the feature map that is passed to the next

layer. Besides, pooling layers are commonly used to reduce the dimension of the repre-
sentation with the max or average pooling.

2) Recurrent Neural Networks (RNNs)  specialize in processing long sequential inputs
and tackling tasks with context spreading over time by leveraging a recurrent struc-
ture. Hence, RNNs achieve great success in the applications such as speech recognition
and machine translation. RNNs process an input sequence one element at a time, and
maintain in their hidden units a state vector � that implicitly contains historical infor-
mation about the past elements. Interestingly, the recurrence of RNNs is analogous to a
dynamical system [42] and can be expressed as

�� = �(��−�,��; �), �
�
= �(��;�),

where ��  and �
�
 are the input and output of the neural network at time step �,  and

� := (�,�) is the parameter for training. �� denotes the state stored in the hidden units at
step � and will be passed to the processing at step � + 1. In this way, ��  implicitly covers
all historical input information (��,⋯,��). Among many variants, long-short term mem-
ory (LSTM) network [44] is a special type of RNNs that excels at handling long-term de-
pendencies and outperforms conventional RNNs by using special  memory cells  and
gates.

3)  Autoencoders [45]  are  used  to  obtain  a  low-dimensional  representation  of  high-
dimensional inputs, which is similar to, but more general than, principal components
analysis (PCA). As illustrated in Fig. 4, an autoencoder is in an hourglass-shape feed-
forward network structure and consists of a encoder function � = �(�) and a decoder
function � = �(�). In particular, an autoencoder is trained to learn an approximation
function � = NN(�;�) = �(�(�)) ≈ � with the loss function �(�, �(�(�))) that penalizes the
dissimilarity  between  the  input  �  and  output  �.  The  bottleneck  layer  has  a  much
smaller amount of neurons, and thus it is forced to form a compressed representation
of the input �.

Figure 4: Illustration of a simple autoencoder network [46].

II-D Deep Reinforcement Learning

For many practical problems, the state and action spaces are large or continuous, to-
gether with complex system dynamics. As a result, it is intractable for value-based RL
to compute or store a gigantic �-value table for all state-action pairs. To deal with this
issue, function approximation  methods are developed to approximate the �-function
with some parameterized function classes, such as linear function or polynomial func-
tion. As for policy-based RL, finding a capable policy class to achieve optimal control is
also nontrivial  in high-dimensional  complex tasks.  Driven by the advances of  deep
learning, DRL that leverages ANNs for function approximation or policy parameteriza-
tion is becoming increasingly popular. Precisely, DRL can use ANNs to 1) approximate

the �-function with a �-network �̂�(�, �) := NN (�, �;�), and 2) parameterize the policy

with the policy network ��(� | �) := NN (� | �; �).

1) �-Function Approximation. �-network can be used to approximate the �-function in
TD learning (5) and �-learning (6). For TD learning, the parameter � is updated by

� ← � + ���� +� �̂�(��+�,��+�)

−�̂�(��,��)�∇� �̂�(��,��),

where  the  gradient  ∇��̂�(��,��)  can  be  calculated  efficiently  using  the  back-

propagation method. As for �-learning, it is known that adopting a nonlinear function,
such as an ANN, for approximation may cause instability and divergence issues in the
training process. To this end, Deep �-Network (DQN) [47] is developed and greatly im-
proves the training stability of �-learning with the following two tricks:

∙ Experience Replay. Instead of performing on consecutive episodes, a widely used trick
is to store all transition experiences � := (�, �, �, ��) in a database � called “replay buffer”.
At each step, a batch of transition experiences is randomly sampled from the replay
buffer � for �-learning update. This can enhance the data efficiency by recycling previ-
ous experiences and reduce the variance of learning updates. More importantly, sam-
pling uniformly from the replay buffer breaks the temporal correlations that jeopar-
dize the training process, and thus improves the stability and convergence of �-learn-
ing.

∙ Target Network. The other trick is the introduction of the target network �̂�̂(�, �) with

parameter �̂, which is a clone of the �-network �̂�(�, �). Its parameter �̂ is kept frozen

and is only updated periodically.  Specifically,  with a batch of transition experiences

(��,��, ��, ��
�)
�=�

�  sampled from the replay buffer, the �-network �̂�(�, �) is updated by solv-

ing

�←arg min
�
�
�=�

�

��� +�max
��

�̂�̂(��
�,��)−�̂�(��,��)�

�

.

The optimization (12) can be viewed as finding an optimal �-network �̂�(�, �) that ap-

proximately solves the Bellman Optimality Equation (4). The critical difference is that

the target network �̂�̂  with parameter �̂ instead of �̂�  is used to compute the maxi-

mization over ��  in (12). After a fixed number of updates above, the target network

�̂�̂(�, �) is renewed by replacing �̂ with the latest learned �. This trick can mitigate the

training instability as the short-term oscillations are circumvented. See [48] for more
details.

In addition, there are several notable variants of DQN that further improve the perfor-
mance, such as double DQN [49] and dueling DQN [50]. Particularly, double DQN is pro-
posed to tackle the overestimation issue of the action values in DQN by learning two
sets of �-functions; one �-function is used to select the action, and the other is used to
determine its value. Dueling DQN proposes a dueling network architecture that sepa-
rately estimates the state value function �(�) and the state-dependent action advantage
function �(�, �), which are then combined to determine the �-value. The main benefit
of this factoring is to generalize learning across actions without imposing any change
to the underlying RL algorithm [50].

2) Policy Parameterization.  Due to  the powerful  generalization capability,  ANNs are
widely used to parameterize control policies, especially when the state and action spa-
ces are continuous. The resultant policy network NN (� | �; �) takes states as the input
and outputs the probability of action selection. In actor-critic methods, it is common to
adopt  both the  �-network NN (�, �;�)  and the  policy  network NN (� | �; �)  simultane-
ously, where the “actor” updates � according to (9) and the “critic” updates � according
to (11). The back-propagation method [41] can be applied to efficiently compute the
gradient of ANNs.

When function approximation is adopted, the theoretical analysis on both value-based
and policy-based RL methods is little and generally limited to the linear function ap-
proximation. Besides, one problem that hinders the use of value-based methods for
large or continuous action space is the difficulty of performing the maximization step.
For example, when deep ANNs are used to approximate the �-function, it is not easy to

solve max�� �̂�(�, �
�) for the optimal action �� due to the nonlinear and complex formu-

lation of �̂�(�, �).

II-E Other Modern Reinforcement Learning Techniques

This  subsection summarizes  several  state-of-the-art  modern RL techniques  that  are
widely used in complex tasks.

II-E1 Deterministic Policy Gradient

The RL algorithms described above focus on stochastic policies � ∼ ��(⋅ | �), while deter-
ministic policies � = ��(�)  are more desirable for many real-world control  problems
with continuous state and action spaces. On the one hand, since most incumbent con-
trollers in physical systems, such as PID control and robust control, are all determinis-
tic, deterministic policies are better matched to the practical control architectures, e.g.,
in  power  system  applications.  On  the  other  hand,  a  deterministic  policy  is  more
sample-efficient as its policy gradient only integrates over the state space. In contrast, a
stochastic policy gradient integrates over both state and action spaces [29]. Similar to
the stochastic case, there is a Deterministic Policy Gradient Theorem [29] showing that
the policy gradient with respect to a deterministic policy ��(�) can be simply expressed
as

∇ �(�) = �����(�)
∇� ���

(�, �)|
�=��(�)

∇� ��(�).

Correspondingly, the “actor” in the actor-critic algorithm can update the parameter �
by

� ← � + �∇� ���
(�, �)|

�=��(�)
∇� ��(�).

One major issue regarding a deterministic policy is the lack of exploration due to the
determinacy of action selection. A common way to encourage exploration is to perturb
a deterministic policy with exploratory noises, e.g., adding a Gaussian noise �  to the
policy with � = ��(�) + �.

II-E2 Modern Actor-Critic Methods

Although achieving great success in many complex tasks, the actor-critic methods are
known to suffer from various problems, such as high variance, slow convergence, local
optimum, etc. Therefore, many variants have been developed to improve the perfor-
mance of actor-critic, and we list some of them below.

∙ Advantaged  Actor-Critic [2,  Chapter  13.4]:  The  advantage  function,
�(�, �)=���

(�, �) − ��������, i.e., the �-function subtracted by a baseline, is introduced to

replace ���
(�, �) in the “actor” update, e.g., (9). One common choice for the baseline is

an estimate of the state value function �(�). This modification can significantly reduce
the variance of the policy gradient estimate without changing the expectation.

∙ Asynchronous Actor-Critic [51] presents an asynchronous variant with parallel train-
ing to enhance sample efficiency and training stability. In this method, multiple actors
are trained in parallel with different exploration polices, then the global parameters
get updated based on all the learning results and synchronized to each actor.

∙ Soft Actor-Critic (SAC) [52] with stochastic policies is an off-policy deep actor-critic al-
gorithm based on the maximum entropy RL framework, which adds an entropy term of
the policy ℋ(��(⋅ | ��)) to objective (1) to encourage exploration.

II-E3  Trust Region/Proximal Policy Optimization

To improve the training stability of policy-based RL algorithms, reference [53] proposes
the Trust Region Policy Optimization (TRPO) algorithm, which enforces a trust region
constraint (15b). It indicates that the KL-divergence D��  between the old and new poli-

cies should not be larger than a given threshold �.  Denote �(�) :=
��(� | �)

����� (� | �)
 as  the

probability ratio between the new policy ��  and the old policy �����  with �(����) = 1.

Then, TRPO aims to solve the constrained optimization (II-E3):

max
�
�(�) = �[�(�)�̂����

(�, �)],

s.t. �[D��(�� | |����� )] ≤ �,

where �̂����
(�, �) is an estimation of the advantage function. However, TRPO is hard to

implement. To this end, work [54] proposes Proximal Policy Optimization (PPO) meth-
ods, which achieve the benefits of TRPO with simpler implementation and better em-
pirical sample complexity. Specifically, PPO simplifies the policy optimization as (16):

max
�
��min ��(�)�̂����

, clip(�(�), 1−�, 1+�)�̂����
��,

where � is a hyperparameter, e.g., � = 0.2, and the clip function clip(�(�), 1 − �, 1 + �) en-
forces �(�)  to stay within the interval [1 − �, 1 + �].  The “min” of the clipped and un-
clipped objectives is taken to eliminate the incentive for moving �(�) outside of the in-
terval [1−�, 1+�] to prevent big updates of �.

II-E4 Multi-Agent RL

Many power system control tasks involve the coordination over multiple agents. For
example, in frequency regulation, each generator can be treated as an individual agent
that makes its own generation decisions, while the frequency dynamics are jointly de-
termined by all power injections. It motivates the multi-agent RL  framework,  which
considers a set �  of agents interacting with the same environment and sharing a com-
mon state � ∈ �. At each time �, each agent � ∈ �  takes its own action ��� ∈ ��  given the
current state �� ∈ �, and receives the reward ��(��, (���)���

), then the system state evolves

to ��+� based on (���)���
. Multi-agent RL is an active and challenging research area with

many unsolved problems. An overview on related theories and algorithms is provided
in [55]. In particular, the decentralized (distributed) multi-agent RL attracts a great deal
of  attention  for  power  system applications.  A  popular  variant  is  that  each  agent  �
adopts a local policy �� = ����� (�

�) with its parameter ��, which determines the action ��

based on local observation �� (e.g., local voltage or frequency of bus �). This method al-
lows for decentralized implementation as the policy �����  for each agent only needs lo-

cal observations, but it still requires centralized training since the system state transi-
tion relies on all agents’ actions. Multi-agent RL methods with distributed training are
still under research and development.

Remark 6. Although the RL techniques above are discussed separately, they can be in-
tegrated for a single problem to achieve all the benefits. For instance, one may apply
the multi-agent actor-critic framework with deterministic policies, adopt ANNs to pa-
rameterize the �-function and the policy, and use the advantage function for actor up-
date. Accordingly, the resultant algorithm is usually named after the combination of
key words, e.g., deep deterministic policy gradient (DDPG), asynchronous advantaged
actor-critic (A3C), etc.

III SELECTIVE APPLICATIONS OF RL IN POWER SYSTEMS

Throughout the past decades, tremendous efforts have been devoted to improving the
modeling of power systems. Schemes based on (optimal) power flow techniques and
precise modeling of various electric facilities are standard for the control and optimiza-
tion of power systems. However, the large-scale integration of renewable generation
and  DERs  significantly  aggravates  the  complexity,  uncertainty,  and  volatility.  It  be-
comes increasingly arduous to obtain accurate system models and power injection pre-
dictions,  challenging the traditional model-based approaches.  Hence,  model-free RL-
based methods become an appealing complement. As illustrated in Fig. 5, the RL-based
schemes relieve the need for accurate system models and learn control policies based
on data collected from actual system operation or high-fidelity simulators, when the
underlying physical models and dynamics are regarded as the unknown environment.

Figure 5: RL schemes for the control and decision-making in power systems.

For power systems, frequency level and voltage profile are two of the most critical indi-
cators of system operating conditions, and reliable and efficient energy management is
a core task. Accordingly, this section focuses on three key applications, i.e., frequency
regulation,  voltage control,  and energy management.  Frequency regulation is  a  fast-
timescale  control  problem with system frequency dynamics,  while  energy manage-
ment is usually a slow-timescale decision-making problem. Voltage control has both
fast-timescale and slow-timescale controllable devices. RL is a general method that is
applicable to both control problems (in fast timescale) and sequential decision-making
problems (in slow timescale) under the MDP framework. In the following, we elaborate
on the overall procedure of applying RL to these key applications from a tutorial per-
spective. We summarize the related literature with a table (see Tables I, II, III) and use
existing works to exemplify how to model power system applications as RL problems.
The critical issues, future directions, and numerical implementation of RL schemes are
also discussed.

Before proceeding, a natural question is why it is necessary to develop new RL-based
approaches since traditional tools and existing controllers mostly work “just fine” in
real-world power systems. The answer varies from application to application, and we
explain some of the main motivations below.

1) Although traditional methods work well in the current grid, it is envisioned that
these methods may not be sufficient for the future grid with high renewable pene-
tration  and  human  user  participation.  Most  existing  schemes  rely  heavily  on
sound knowledge of power system models, and have been challenged by various
emerging issues, such as the lack of accurate distribution grid models, highly un-
certain renewable generation and user behavior,  coordination among massive
distributed devices, the growing deployment of EVs coupled with transportation,
etc.

2) The research community has been studying various techniques to tackle these chal-
lenges, e.g.,  adaptive control, stochastic optimization, machine learning, zeroth-
order methods, etc. Among them, RL is a promising direction to investigate and
will  play an important role in addressing these challenges because of its data-
driven and model-free nature. RL is capable of dealing with highly complex and
hard-to-model problems and can adapt to rapid power fluctuations and topology
changes.

3) This paper does not suggest a dichotomy between RL and conventional methods.
Instead, RL can complement existing approaches and improve them in a data-
driven way. For instance, policy-based RL algorithms can be integrated into exist-
ing controllers to online adjust key parameters for adaptivity and achieve hard-to-
model objectives. It is necessary to identify the right application scenarios for RL
and use RL schemes appropriately. This paper aims to throw light and stimulate
such discussions and relevant research.

III-A Frequency Regulation

Frequency regulation (FR) is to maintain the power system frequency closely around
its nominal value, e.g., 60 Hz in the U.S., through balancing power generation and load
demand. Conventionally, three generation control mechanisms in a hierarchical struc-
ture are implemented at different timescales to achieve fast response and economic ef-

ficiency. In bulk power systems,

the  primary  FR  generally  operates  locally  to  eliminate  power  imbalance  at  the
timescale of a few seconds, e.g., using droop control, when the governor adjusts the me-
chanical power input to the generator around a setpoint and based on the local fre-
quency deviation. The secondary FR, known as automatic generation control (AGC), ad-
justs the setpoints of governors to bring the frequency and tie-line power interchanges
back to their nominal values, which is performed in a centralized manner within min-
utes. The tertiary FR, namely economic dispatch, reschedules the unit commitment and
restores the secondary control reserves within tens of minutes to hours. See [56] for de-
tailed explanations of the three-level FR architecture. In this subsection, we focus on
the primary and secondary FR mechanisms, as the tertiary FR does not involve fre-
quency dynamics and is corresponding to the power dispatch that will be discussed in
Section III-C.

There are a number of recent works [57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
71] leveraging model-free RL techniques for FR mechanism design, which are summa-
rized in Table I.  The main motivations for developing RL-based FR schemes are ex-
plained as follows.

1) Although  the  bulk  transmission  systems  have  relatively  good  models  of  power
grids, there may not be accurate models or predictions on the large-scale renew-
able generation due to the inherent uncertainty and intermittency. As the pene-
tration of renewable generation keeps growing, new challenges are posed to tradi-
tional FR schemes for maintaining nominal frequency in real-time.

2) FR in the distribution level, e.g., DER-based FR, load-side FR, etc., has attracted a
great deal of recent studies. However, distribution grids may not have accurate
system model information,  and it  is  too complex to model vast  heterogeneous
DERs and load devices. In such situations, RL methods can be adopted to circum-
vent the requirement of system model information and directly learn control poli-
cies from available data.

3) With less inertia and fast power fluctuations introduced by inverter-based renew-
able energy resources,  power systems become more and more dynamical  and
volatile.  Conventional  frequency  controllers  may  not  adapt  well  to  the  time-
varying operational environment [68]. In addition, existing methods have diffi-
culty coordinating large-scale systems at a fast time scale due to the communica-
tion and computation burdens, limiting the overall frequency regulation perfor-
mance  [58].  Hence,  (multi-agent)  DRL  methods  can  be  used  to  develop  FR
schemes to improve the adaptivity and optimality.

In the following, we take multi-area AGC as the paradigm to illustrate how to apply RL
methods, as the mathematical models of AGC have been well established and widely
used in the literature [56, 72, 73]. We will present the definitions of environment, state
and action, the reward design, and the learning of control policies, and then discuss
several key issues in RL-based FR. Note that the models presented below are examples
for illustration, and there are other RL formulations and models for FR depending on
the specific problem setting.

TABLE I: Literature Summary on Learning for Frequency Regulation.

Reference Problem
State/Action

Space
Algorithm Policy Class Key Features

Yan et al.

2020 [58]

Multi-area

AGC
Continuous

Multi-agent

DDPG
ANN

1-Offline centralized

learning and decen‐

tralized application;

2-Multiply an auto-

correlated noise to

the actor for explo‐

ration; 3-An initial‐

ization process is

used for ANN train‐

ing acceleration.

Li et al.

2020 [59]

Single-area

AGC
Continuous

Twin delayed

DDPG (actor-

critic)

ANN

The twin delayed

DDPG method is

used to improve the

exploration process

with multiple ex‐

plorers.

Khooban

et al. 2020

[60]

Microgrid FR Continuous
DDPG (actor-

critic)
ANN

1-DDPG method

works as a supple‐

mentary controller

for a PID-based

main controller to

improve the online

adaptive perfor‐

mance; 2-Add

Ornstein-Uhlenbeck

process based noises

to the actor for ex‐

ploration.

Younesi et

al. 2020 [

61]

Microgrid FR Discrete �-learning �-greedy

�-learning works as

a supervisory con‐

troller for PID con‐

trollers to improve

the online dynamic

response.

Chen et al.

2020 [62]

Emergency

FR
Discrete

Single/multi-

agent �-learn‐

ing/DDPG

�-greedy/

greedy/ANN

1-Offline learning

and online applica‐

tion; 2-The �-learn‐

ing/DDPG-based

controller is used for

limited/multiple

emergency scenar‐

ios.

Abouheaf

et al. 2019

[63]

Multi-area

AGC
Continuous

Integral RL

(actor-critic)

Linear feed‐

back con‐

troller

Continuous-time

integral-Bellman op‐

timality equation is

considered.

Wang et al.

2019 [65]

Optimization

of activation

rules in AGC

Discrete

Multi-

objective RL

(�-learning)

Greedy

A constrained opti‐

mization model is

built to solve for op‐

timal participation

factors, where the

objective is the com‐

bination of multiple

�-functions.

Singh et al.

2017 [69]

Multi-area

AGC
Discrete �-learning

Stochastic

policy

An estimator agent

is defined to esti‐

mate the frequency

bias factor �
�
 and

determine the ACE

signal accordingly.

III-A1 Environment, State and Action

The frequency dynamics in a power network can be expressed as (17):

��

��
= �(�,Δ��,Δ��),

where � :=((Δ��)���
, (Δ���)����

) denotes the system state, including the frequency devi-

ation Δ��  at each bus � and the power flow deviation Δ���  over line �� ∈ ℰ from bus � to
bus � (away from the nominal values). Δ�� :=(Δ��

�)
���

, Δ�� :=(Δ��
�)

���
 capture the

deviations of generator mechanical power and other power injections, respectively.

The governor-turbine control model [56] of a generator can be formulated as the time
differential equation (18):

�Δ��
�

��
= �

�
(Δ��

�,Δ��, ��
�), � ∈ �,

where ��
� is the generation control command. A widely used linearized version of (17)

and (18) is provided in Appendix A. However, the real-world frequency dynamics (17)
and generation control model (18) are highly nonlinear and complex. This motivates
the use of model-free RL methods, since the underlying physical models (17) and (18),
together with operational constraints, are simply treated as the environment in the RL
setting.

When controlling generators for FR, the action is defined as the concatenation of the
generation control  commands with � := (��

�)
���

.  The  corresponding  action  space  is

continuous in nature but could get discretized in �-learning-based FR schemes [69, 62].
Besides,  the  continuous-time  system  dynamics  are  generally  discretized  with  the
discrete-time horizon �  to fit the RL framework, and the time interval Δ � depends on
the sampling or control period.

We denote Δ��  in (17) as the deviations of other power injections, such as loads (nega-
tive  power injection),  the  outputs  of  renewable  energy  resources,  the  charging/dis-
charging power of energy storage systems, etc. Depending on the actual problem set-
ting, Δ��  can be treated as exogenous states with additional dynamics, or be included
in the action � if these power injections are also controlled for FR [61, 60].

III-A2 Reward Design

The design of the reward function plays a crucial role in successful RL applications.
However, there is no general rule to follow, but one principle is to effectively reflect the

control goal. For multi-area AGC

, it aims to restore the frequency and tie-line power flow to the nominal values after
disturbances. Accordingly, the reward at time � ∈ �  can be defined as the minus of fre-
quency deviation and tie-line flow deviation, e.g., in the square sum form (19) [58]:

�(�) = −Δ � ⋅ �
���

�(�
�
Δ��(�))

�
+ ( �

� � ����

Δ���(�))
�
�,

where �
�
 is the frequency bias factor. For single-area FR, the goal is to restore the sys-

tem frequency, thus the term related to tie-line power flow can be removed from (19).
Besides, the exponential function [71], absolute value function [59], and other sophisti-
cated reward functions involving the cost of generation change and penalty for large
frequency deviation [59], can also be used.

III-A3 Policy Learning

Since the system states may not be fully observable in practice, the RL control policy is
generally defined as the map �(�) = �(�(�)) from the available measurement observa-
tions �(�) to the action �(�). The following two steps are critical to learn a good control
policy.

∙ Select Effective Observations. The selection of observations typically faces a trade-off
between informativeness and complexity. It is helpful to leverage domain knowledge to
choose effective observations.  For example,  multi-area AGC conventionally operates
based on the area control  error  (ACE)  signal,  given by ACE� = �� Δ�� +∑� � ����

Δ���.

Accordingly, the proportional, integral, and derivative (PID) counterparts of the ACE

signal, i.e., (ACE�(�),∫ACE�(�) ��,
�ACE�(�)

��
), are adopted as the observation in [58]. Other

measurements,  such  as  the  power  injection  deviations  Δ��
�,Δ��

�,  could  also  be  in-
cluded in the observation [69, 59]. Reference [64] applies the stacked denoising autoen-
coders to extract compact and useful features from the raw measurement data for FR.

∙ Select RL Algorithm. Both valued-based and policy-based RL algorithms have been ap-
plied to FR in power systems. In �-learning-based FR schemes, e.g., [69], the state and
action spaces are discretized and the �-greedy policy is used. Recent works [58, 60] em-
ploy the DDPG-based actor-critic framework to develop the FR schemes, considering
continuous action and observation. In addition, multi-agent RL is applied to coordinate
multiple control areas or multiple generators in [58, 67, 69], where each agent designs
its own control policy ��(�) = ��(��(�)) with the local observation ��. In this way, the resul-
tant algorithms can achieve centralized learning and decentralized implementation.

III-A4 Simulation Results

Reference [68] conducts simulations on an interconnected power system with four pro-
vincial control areas, and demonstrates that the proposed emotional RL algorithm out-
performs SARSA, Q-learning and PI controllers, with much smaller frequency devia-
tions and ACE values in all test cases. In [58], the numerical tests on the New England
39-bus system show that the multi-agent DDPG-based controller improves the mean ab-
solute control error by 60.5% over the DQN-based controller and 50.5% over a fine-
tuned PID controller. In [59], the simulations on a provincial power grid with ten gen-
erator units show that the proposed DCR-TD3 method achieves the frequency deviation
of 6.35 × 10−� Hz and ACE of 26.48 MW, which outperforms the DDPG-based controller
(with frequency deviation of 6.48 × 10−�  Hz and ACE of 26.97  MW) and PI  controller
(with frequency deviation of 15.54 × 10−� Hz and ACE of 60.9 MW).

III-A5 Discussion

Based on the existing works listed above, we discuss several key observations as fol-
lows.

∙ Environment Model. Most of the references build environment models or simulators
to simulate the dynamics and responses of power systems for training and testing their
proposed algorithms. These simulators are typically high fidelity with realistic compo-
nent models, which are too complex to be useful for the direct development and opti-
mization of controllers. Moreover, it is laborious and costly to build and maintain such
environment models in practice, and thus they may not be available for many power
grids. When such simulators are unavailable, a potential solution is to train off-policy
RL schemes using real system operation data.

∙ Safety. Since FR is vital for power system operation, it necessitates safe control poli-
cies. Specifically, two requirements need to be met: 1) the closed-loop system dynamics
are stable when applying the RL control policies; 2) the physical constraints, such as
line thermal limits, are satisfied. However, few existing studies consider the safety is-
sue of applying RL to FR. A recent work [57] proposes to explicitly engineer the ANN
structure of DRL to guarantee the frequency stability.

∙ Integration with Existing Controllers. References [61, 60] use the DRL-based controller
as a supervisory or supplementary controller to existing PID-based FR controllers, to
improve the dynamical adaptivity with baseline performance guarantee. More discus-
sions are provided in Section IV-D.

∙ Load-Side Frequency Regulation. The researches mentioned above focus on control-
ling generators for FR. Besides, various emerging power devices, e.g., inverter-based PV
units, ubiquitous controllable loads with fast response, are promising complements to
generation-frequency control  [73,  72].  These  are  potential  FR  applications  of  RL  in
smart grids.

III-B Voltage Control

Voltage control aims to keep the voltage magnitudes across the power networks close
to the nominal values or stay within an acceptable interval. Most recent works focus on
voltage control in distribution systems and propose a variety of control mechanisms [
74, 75, 76, 77, 78]. As the penetration of renewable generation, especially solar panels
and wind turbines, deepens in distribution systems, the rapid fluctuations and signifi-
cant uncertainties of renewable generation pose new challenges to the voltage control
task. Meanwhile, unbalanced power flow, multi-phase device integration, and the lack
of accurate network models further complicate the situation. To this end, a number of
studies [79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96] propose using
model-free RL for voltage control.  We summarize the related work in Table  II  and
present below how to solve the voltage control problem in the RL framework.

TABLE II: Literature Summary on Learning for Voltage Control.

Reference
Control

Scheme

State/Action

Space
Algorithm Policy Class Key Features

Shi et. al.

2021 [79]

Reactive

power con‐

trol

Continuous DDPG ANN

Through monotone

policy network de‐

sign, a Lyapunov

function-based

Stable-DDPG

method is proposed

for voltage control

with stability guar‐

antee.

Lee et. al.

2021 [80]

Voltage reg‐

ulators, ca‐

pacitors,

batteries

Hybrid

Proximal pol‐

icy optimiza‐

tion

Graph convo‐

lutional net‐

work

A graph neural net‐

works (topology)-

based RL method is

proposed and exten‐

sive simulations are

performed to study

the properties of

graph-based poli‐

cies.

Liu et. al.

2021 [81]

SVCs and

PV units
Continuous

Multi-agent

constrained

soft actor-

critic

ANN

Multiple agents are

trained in a central‐

ized manner to learn

the coordination

control strategies

and are executed in

a decentralized man‐

ner based on local

information.

Yin et. al.

2021 [82]

Automatic

voltage con‐

trol

Discrete Q-learning ANN

The emotional fac‐

tors are added to the

ANN structure and

Q-learning to im‐

prove the accuracy

and performance of

the control algo‐

rithm.

Gao et. al.

2021 [83]

Voltage reg‐

ulator, ca‐

pacitor

banks,

OLTC

Hybrid/ dis‐

crete

Consensus

multi-agent

DRL

ANN

1- The maximum

entropy method is

used to encourage

exploration; 2- A

consensus multi-

agent RL algorithm

is developed, which

enables distributed

control and efficient

communication.

Sun et. al.

2021 [84]

PV reactive

power con‐

trol

Hybrid/ con‐

tinuous

Multi-agent

DDPG
ANN

A voltage sensitivity

based DDPG

method is proposed,

which analytically

computes the gradi‐

ent of value function

to action rather than

using the critic

ANN.

Zhang et.

al. 2021 [

85]

Smart in‐

verters, volt‐

age regula‐

tors, and ca‐

pacitors

Continuous/

discrete

Multi-agent

DQN
�-greedy

1- Both the network

loss and voltage vio‐

lation are considered

in the reward defini‐

tion; 2- Multi-agent

DQN is used to en‐

hance the scalability

of the algorithm.

Mukherjee

et. al. 2021

[86]

Load shed‐

ding
Continuous

Hierarchical

DRL
LSTM

1- A hierarchical

multi-agent RL al‐

gorithm with two

levels is developed

to accelerate learn‐

ing; 2- Augmented

random search is

used to solve for op‐

timal policies.

Kou et. al.

2020 [87]

Reactive

power con‐

trol

Continuous DDPG ANN

A safety layer is

formed on top of the

actor network to en‐

sure safe explo‐

ration, which pre‐

dicts the state

change and prevents

the violation of con‐

straints.

Al-Saffar

et. al. 2020

[88]

Battery en‐

ergy storage

systems

Discrete
Monte-Carlo

tree search
Greedy

The proposed ap‐

proach divides a

network into multi‐

ple smaller seg‐

ments based on im‐

pacted regions; and

it solves the over-

voltage problem via

Monte-Carlo tree

search and model

predictive control.

Xu et. al.

2020 [90]

Set OLTC

tap positions

Hybrid/ dis‐

crete

LSPI (batch

RL)
Greedy

1- “Virtual” sample

generation is used

for better explo‐

ration; 2- Adopt a

multi-agent trick to

handle scalability

and use Radial basis

function as state fea‐

tures.

Yang et. al.

2020 [91]

On-off

switch of

capacitors

Hybrid/ dis‐

crete
DQN Greedy

Power injections are

determined via tra‐

ditional OPF in fast

timescale, and the

switching of capaci‐

tors is determined

via DQN in slow

timescale.

Wang et.

al. 2020 [

92]

Generator

voltage set‐

points

Continuous
Multi-agent

DDPG
ANN

Adopt a competitive

(game) formulation

with specially de‐

signed reward for

each agent.

Wang et.

al. 2020 [

93]

Set tap/on-

off positions

Hybrid/

Discrete

Constrained

SAC
ANN

1- Model the volt‐

age violation as con‐

straint using the

constrained MDP

framework; 2-

Reward is defined

as the negative of

power loss and

switching cost.

Duan et. al.

2020 [94]

Generator

voltage set‐

points

Hybrid DQN/DDPG
Decaying

�-greedy/ANN

1- DQN is used for

discrete action and

DDPG is used for

continuous action;

2- Decaying

�-greedy policy is

employed in DQN

to encourage explo‐

ration.

Cao et. al.

2020 [95]

PV reactive

power con‐

trol

Continuous
Multi-agent

DDPG
ANN

The attention neural

network is used to

develop the critic to

enhance the algo‐

rithm scalability.

Liu et. al.

2020 [96]

Reactive

power con‐

trol

Continuous
Adversarial

RL [97]/SAC

Stochastic pol‐

icy

1- A two-stage RL

method is proposed

to improve the on‐

line safety and effi‐

ciency via offline

pre-training; 2-

Adversarial SAC is

used to make the on‐

line application ro‐

bust to the transfer

gap.

III-B1 Environment, State and Action

In distribution systems, the controllable devices for voltage control can be classified
into slow timescale  and fast  timescale.  Slow timescale  devices,  such as  on-load tap
changing transformers (OLTCs), voltage regulators, and capacitor banks, are discretely
controlled on an hourly or daily basis. The states and control actions for them can be
defined as

����� := �(��)���
, (���,���)����

, ���, ���, ����,

����� := �Δ ���,Δ���,Δ����,

where �� is the voltage magnitude of bus �, and ���,��� are the active and reactive power

flows over line ��. ���, ���, ��� denote the tap positions of the OLTCs, voltage regulators,
and capacitor banks respectively, which are discrete values. Δ���,Δ���,Δ���  denote
the discrete changes of corresponding tap positions.

The fast timescale devices include inverter-based DERs and static Var compensators

(SVCs), whose (active/reactive) power outputs

can be continuously controlled within seconds. Their states and control actions can be
defined as

����� := �(��)���
, (���,���)����

�,

����� := �����, ����, �����,

where ����, ���� collect the continuous active and reactive power outputs of DERs re-
spectively, and ���� denotes the reactive power outputs of SVCs.

Since RL methods handle continuous and discrete actions differently,  most  existing
studies only consider either continuous control actions (e.g., ����) [92, 95], or discrete
control actions (e.g., ��� and/or ���) [89, 90]. Nevertheless, the recent works [91, 98]
propose two-timescale or bi-level RL-based voltage control algorithms, taking into ac-
count both fast continuous devices and slow discrete devices. In the rest of this subsec-
tion, we uniformly use � and � to denote the state and action.

Given the definitions of state and action, the system dynamics that depict the environ-
ment can be formulated as

�(� + 1) = ���(�),�(�),���(�), ���(�)�,

where ���, ��� denote the exogenous active power and reactive power injections to the
grid, including load demands and other generations. The transition function � captures
the tap position evolution and the power flow equations, which could be very complex
or even unknown in reality. The exogenous injections ���, ��� include the uncontrol-
lable renewable generations that are difficult to predict well. These issues motivate the
RL-based voltage control schemes as the dynamics model (22) is not required in the RL
setting.

III-B2 Reward Design

The goal of voltage control is to maintain the voltage magnitudes close to the nominal
value (denoted as 1 per unit (p.u.)) or within an acceptable range. Accordingly, the re-
ward function is typically in the form of penalization on the voltage deviation from 1
p.u. For example, in [90, 91, 95], the reward is defined as (23),

�(�,�) = − �
���

(�� − 1)
�
.

An alternative is to set the reward to be negative (e.g., −1) when the voltage is outside
an acceptable range (e.g., ±5% of the nominal value), and positive (e.g., +1) when inside
the range [94]. Moreover, the reward can incorporate the operation cost of controllable
devices (e.g., switching cost of discrete devices), power loss [93], and other sophisti-
cated metrics [92].

III-B3 RL Algorithms

Both value-based and policy-based RL algorithms have been applied for voltage con-
trol:

∙ Value-Based RL. Several works [89, 90, 91, 94] adopt value-based algorithms, such as
DQN and LSPI, to learn the optimal �-function with function approximation, typically
using ANNs [91, 94] or radial basis functions [90]. Based on the learned �-function,
these works use the greedy policy as the control policy, i.e., �(�) = arg max�~�� �(�(�),�

~).
Two limitations of the greedy policy include 1) the action selection depends on the state
of the entire system, which hinders distributed implementation; 2) it is usually not suit-
able for continuous action space since the maximization may be difficult to compute,
especially when complex function approximation, e.g., with ANNs, is adopted.

∙ Policy-Based RL. Compared with value-based RL methods, the voltage control schemes
based on actor-critic algorithms, e.g., [92, 93, 94, 95], are more flexible, which can ac-
commodate both continuous and discrete actions and enable distributed implementa-
tion.  Typically,  a  parameterized  deterministic  policy  class  �

�
��� = ����� (��

���)  is  em-

ployed for each DER device �, which determines the reactive power output �
�
��� based

on local observation ��
��� with parameter ��. The policy class �����  is often parameter-

ized using ANNs. Then some actor-critic methods, e.g., multi-agent DDPG, are used to
optimize parameter ��, where a centralized critic learns the �-function with ANN ap-
proximation and each DER device performs the policy gradient update as the actor.

III-B4 Simulation Results

In [85], the simulations on the IEEE 123-bus system show that the proposed multi-agent
DQN method converges to a stable reward level after about 4000 episodes during the
training process, and it achieves an average power loss reduction of 75.23 kW com-
pared with a baseline method. In [93], the tests on a 4-bus feeder system show that the
constrained SAC and DQN methods take about 1 × 10� training samples to achieve sta-
ble performance, while the constrained policy optimization (CPO) method requires up
to 5 × 10� training samples to converge. Besides, the constrained SAC achieves the high-
est return and almost zero voltage violations for the 34-bus and 123-bus test feeders. In
[90], it takes about 30 seconds for the proposed LSPI-based algorithm to converge in the
case of IEEE 13-bus test feeder, which is faster than the exhaustive search approach by
several orders of magnitude but maintains a similar level of reward.

III-B5 Discussion

Some key issues of applying RL to voltage control are discussed below:

∙ Scalability. As the network scale and the number of controllable devices increase, the
size of the state/action space grows exponentially,  which poses severe challenges in
learning the �-function. Reference [90] proposes a useful trick that defines different
�-functions for different actions, which leads to a scalable method under its special
problem formulation.

∙ Data Availability.  To learn the �-function for a given policy, on-policy RL methods,
such as actor-critic, need to implement the policy and collect sample data. This could be
problematic since the policy is not necessarily safe, and thus the implementation on
real-world power systems may be catastrophic. One remedy is to train the policy on
high-fidelity simulators. Reference [90] proposes a novel method to generate virtual
sample data for a certain policy, based on the data collected from implementing an-
other safe policy. More discussions on safety are provided in Section IV-A.

∙ Topology Change. The network topology, primarily for distribution systems, is subject
to changes from time to time due to network reconfiguration, line faults, and other op-
erational factors. A voltage control policy trained for a specific topology may not work
well under a different network topology. To cope with this issue, the network topology
can be included as one of the states or a parameter of the policy. Reference [80] repre-
sents the power network topology with graph neural networks and studies the proper-
ties of graph-based voltage control policies. Besides, if the set of network topologies is
not large, one can train a separate control policy offline for each possible topology and
apply the corresponding policy online. To avoid learning from scratch and enhance ef-
ficiency, one may use transfer RL [99] to transplant the well-trained policy for a given
topology to another.

III-C Energy Management

Energy management is an advanced application that utilizes information flow to man-
age power flow and maintain power balance in a reliable and efficient manner. To this
end, energy management systems (EMSs) are developed for electric power control cen-
ters to monitor, control, and optimize the system operation. With the assistance of the
supervisory control and data acquisition (SCADA) system, the EMS for transmission sys-
tems is technically mature. However, for many sub-regional power systems, such as
medium/low-voltage distribution grids and microgrids, EMS is still under development
due  to  the  integration  of  various  DER  facilities  and  the  lack  of  metering  units.
Moreover, an EMS family [100] with a hierarchical structure is necessitated to facilitate
different levels of energy management, including grid-level EMS, EMS for coordinating
a cluster of DERs, home EMS (HEMS), etc.

In practice,  there are significant uncertainties in energy management,  which result
from unknown models and parameters of power networks and DER facilities, uncer-
tain user behaviors and weather conditions,  etc.  Hence,  many recent  studies adopt
(D)RL techniques to develop data-driven EMS. A summary of the related literature is
provided in Table III. In the rest of this subsection, we first introduce the RL models of
DERs and adjustable loads, then review the RL-based schemes for different levels of en-
ergy management problems.

III-C1 State, Action, and Environment

We present the action, state and environment models for several typical DER facilities,
buildings, and residential loads.

∙ Distributed Energy Resources: For compact expression, we consider a bundle of sev-
eral typical DERs, including a dispatchable PV unit, a battery, an EV, and a diesel gener-
ator (DG). The action at time � ∈ � is defined as

����(�) := ����(�), ����(�), ���(�), ���(�)�.

Here, ���,����,���,��� are the power outputs of the PV unit, battery, EV, and DG re-
spectively, which are continuous. ����,��� can be either positive (discharging) or nega-
tive (charging). The DER state at time � can be defined as

����(�) := ��̅ ̅��(�), ����(�), ���(�), ���(�)�,

where �̅ ̅��  is the maximal PV generation power determined by the solar irradiance.
The PV output ��� can be adjusted within the interval [0, �̅ ̅��], and ���(�) = �̅ ̅��(�) when
the PV unit operates in the maximum power point tracking (MPPT) mode. ����,��� de-
note the associated state of charge (SOC) levels. ��� captures other related states of the
EV, e.g. current location (at home or outside), travel plan, etc.

∙ Building HVAC: Buildings account for a large share of the total energy usage, about
half of which is consumed by the heating, ventilation, and air conditioning (HVAC) sys-
tems [101]. Smartly scheduling HVAC operation has huge potential to save energy cost,
but the building climate dynamics are intrinsically hard to model and affected by vari-
ous environmental factors. Generally, a building is divided into multiple thermal zones,
and the action at time � is defined as

�����(�) := ���(�), ��(�), (�
�(�))

����,

where ��  and ��  are the conditioned air temperature and the supply air temperature,
respectively. �� is the supply air flow rate at zone � ∈ �. The choice of states is subtle,
since many exogenous factors may affect the indoor climate. A typical definition of the
HVAC state is

�����(�) := �����(�), ����
� (�),ℎ�(�), ��(�)�

���
�,

where ����  and ���
�  are the outside temperature and indoor temperature of zone �; ℎ�

and �� are the humidity and occupancy rate of zone �, respectively. Besides, the solar ir-
radiance, the carbon dioxide concentration and other environmental factors may also
be included in the state �����.

∙ Residential Loads: Residential demand response (DR) [102] that motivates changes in
electric consumption by end-users in response to time-varying electricity price or in-
centive payments attracts considerable recent attention. The domestic electric appli-
ances are classified as 1) non-adjustable loads, e.g., computers and refrigerators, which
are critical and must be satisfied; 2) adjustable loads, e.g., air conditioners and washing
machines, whose operating power or usage time can be adjusted. The action for an ad-
justable load � at time � ∈ � can be defined as

��
�(�) := ���

�(�), �
�
�(�)�, � ∈ ��,

where binary ��
� ∈ {0, 1} denotes whether switching the on/off working mode (equal to

1) or keeping unchanged (equal to 0). �
�
� is the power consumption of load �, which can

be adjusted either discretely or continuously depending on the load characteristics. The
operational state of load � can be defined as

��
�(�) := (��

�(�),��
�(�)), � ∈ ��,

where binary ��
� equals 0 for the off status and 1 for the on status. ��

� collects other re-
lated states of load �. For example, the indoor and outdoor temperatures are contained
in ��

� if load � is an air conditioner [103]; and ��
� captures the task progress and the re-

maining time to the deadline for a washing machine load.

∙ Other System States: In addition to the operational states above, there are some criti-
cal system states for EMS, e.g.,

����(�) := ��, ℓ(� − �� : � + ��),�(�),�(�),⋯�,

including the current time �, electricity price ℓ (from past ��  time steps to future ��

time predictions) [104], voltage profile � := (��)���
, power flow � := (���)����

, etc.

The state definitions in (25), (27), and (29) only contain the present status at time �,
which can also include the past values and future predictions to capture the temporal

1

1 A generic reward function is given by �(�, �, ��) where the next state �� is also included as an argu-

ment, but there is no essential difference between the case with �(�, �) and the case with �(�, �, ��) in al-

gorithms  and  results.  By  marginalizing  over  next  states  ��  according  to  the  transition  function

ℙ(�� | �, �), one can simply convert �(�, �, ��) to �(�, �) [2].

2

2� ∼ �(⋅ | �) is a stochastic policy, and it becomes a deterministic policy � = �(�) when the probability

distribution �(⋅ | �) is a singleton for all �.

3

3Such a behavior policy, also called exploratory policy, can be arbitrary as long as it visits all the states

and actions sufficiently often.

4

4In some literature, SARSA is also called �-learning.

5

5There are also off-policy variants of the actor-critic algorithm, e.g., [27].

6

6Specifically, the convolution operation is performed by sliding the filter matrix ��  across the input

matrix �  and computing the corresponding element-wise multiplications, so that each element in

matrix �� is the sum of the element-wise multiplications between �� and the associated sub-matrix of

� . See [42, Chapter 9] for a detailed definition of convolution.

7

7There are some other types of primary FR, e.g., using autonomous centralized control mechanisms,

in small-scale power grids, such as microgrids.

8

8For multi-area AGC problem, each control area is generally aggregated and characterised by a single

governor-turbine model (18). Then the control actions for an individual generator within this area

are allocated based on its participation factor. Thus each bus � represents an aggregate control area,

and Δ��� is the deviation of tie-line power interchange from area � to area �.

9

9Due to the comparable magnitudes of line resistance and reactance in distribution networks, the

conditions for active-reactive power decoupling are no longer met. Thus active power  outputs also

play a role in voltage control, and alternating current (AC) power flow models are generally needed.
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(31)

(32)

(33a)

(33b)

(34a)

(34b)

patterns. In addition, the previous actions may also be considered as one of the states,
e.g., adding ����(�−1) to the state ����(�). For different energy management problems,
their state � and action � are determined accordingly by selecting and combining the
definitions in (but not limited to) (24)-(30). And the environment model is given by

�(� + 1) = �(�(�),�(�),���(�)),

where ��� captures other related exogenous factors. We note that the RL models pre-
sented above are examples for illustrative purposes, and one needs to build its own
models to fit specific applications.

III-C2 Energy Management Applications

Energy management indeed covers a broad range of sub-topics, including integrated
energy systems (IESs), grid-level power dispatch, management of DERs, building HVAC
control, and HEMS, etc. We present these sub-topics in a hierarchical order below, and
summarize the basic attributes and key features of representative references in Table
III.

∙ Integrated Energy Systems [105], also referred to as multi-energy systems, incorporate
the power grids with heat networks and gas networks to accommodate renewable en-
ergy and enhance the overall energy efficiency and flexibility [106]. Reference [107]
proposes a DDPG-based real-time control strategy to manage a residential multi-energy
system, where DERs,  heat  pumps,  gas boilers,  and thermal energy storage are con-
trolled to minimize the total operational cost. In [108], the management of IESs with in-
tegrated  demand  response  is  modeled  as  a  Stackelberg  game,  and  an  actor-critic
scheme is developed for the energy provider to adjust pricing and power dispatching
strategies to cope with unknown private parameters of users. Extensive case studies
are conducted in [109] to compare the performance of a twin delayed DDPG scheme
against a benchmark linear model-predictive-control method, which empirically show
that RL is a viable optimal control technique for IES management and can outperform
conventional approaches.

∙ Grid-Level  Power Dispatch  aims to  schedule  the power outputs  of  generators  and
DERs to optimize the operating cost of the entire grid while satisfying the operational
constraints. Optimal power flow (OPF) is a fundamental tool of traditional power dis-
patch schemes. Several recent works [110, 111, 112, 113, 114] propose DRL-based meth-
ods to solve the OPF problem in order to achieve fast solution and cope with the ab-
sence of accurate grid models. Most existing references [115, 116, 117, 118, 119, 120] fo-
cus on the power dispatch in distribution grids or microgrids. In [118], a model-based
DRL algorithm is  developed to online schedule a residential  microgrid,  and Monte-
Carlo tree search is adopted to find the optimal decisions. Reference [120] proposes a
cooperative RL algorithm for distributed economic dispatch in microgrids, where a dif-
fusion strategy is used to coordinate the actions of many DERs.

∙ Device-Level Energy Management focuses on the optimal control of DER devices and
adjustable loads, such as EV, energy storage system, HVAC, and residential electric ap-
pliances, which usually aims to minimize the total energy cost under time-varying elec-
tricity price. In [121, 122, 123], various RL techniques are studied to design EV charging
policies to deal with the randomness in the arrival and departure time of an EV. See [
124] for a review on RL-based EV charging management systems. References [125, 126,
127] adopt DQN and DDPG to learn the charging/discharging strategy for controlling
battery systems considering unknown degradation models. In terms of building HVAC
control,  there are multiple uncertainty factors such as random zone occupancy, un-
known thermal dynamics models, uncertain outdoor temperature and electricity price,
etc. Moreover, the thermal comfort and air quality need to be guaranteed. To this end,
a number of studies [128, 129, 130, 131, 132] leverage DRL for HVAC system control. In
[133, 104, 134, 135], DRL-based HEMS is developed to optimally schedule household
electric appliances, considering resident’s preferences, uncertain electricity price and
weather conditions.

III-C3 Simulation Results

In [136], the offline training of DQN over 1000 episodes takes about 2 hours, and the
simulations show that the double DQN-based HEMS can reduce the user’s daily electric-
ity payment by about 50%. In [137], the DDPG-based EMS method achieves a relatively
stable reward after 3000 episodes in the training process, and reduces the total energy
cost by 15.2% and 8.1% compared with two baseline algorithms. In the case studies of [
121], the training of ANN converges after about 35000 epochs; the DQN-based EV charg-
ing scheme decreases the charging cost by 77.3% in comparison with the uncontrolled
solution and performs better than other benchmark solutions. Reference [138] com-
pares the training efficiency of  DQN, DPG, and prioritized DDPG, which take about
8000, 13000, and 6200 episodes to reach the benchmark performance, respectively.

III-C4 Discussion

Some key issues are discussed as follows.

∙ Challenges in Controlling DERs and Loads. Large-scale distributed renewable genera-
tion  introduces  significant  uncertainty  and  intermittency  to  energy  management,
which requires highly accurate forecasting techniques and fast adaptive controllers to
cope. The partial observability issue of complex facilities and the heterogeneity of vari-
ous devices lead to further difficulties in coordinating massive loads. Moreover, the
control of HVACs and residential loads involves interaction with human users; thus it is
necessary to take into account user comfort and learn unknown and diverse user be-
haviors.

∙ Physical Constraints. There are various physical constraints, e.g., the state of charge
limits  for  batteries  and  EVs,  that  should  be  satisfied  when  taking  control  actions.
Reference [120] formulates the constraint violation as a penalty term in the reward, in
the form of a logarithmic barrier function. Reference [122] builds a constrained MDP
problem to take into account the physical constraints and solves the problem with the
constrained policy optimization method [123]. These methods impose the constraints
in a “soft” manner, and there is still a chance to violate the constraints. More discus-
sions are provided in Section IV-A.

∙ Hybrid of Discrete and Continuous State/Action.  Energy management often involves
the control of a hybrid of discrete devices and continuous devices, yet the basic RL
methods only focus on handling either discrete or continuous actions. Some �-learn-
ing-based work [133] discretizes the continuous action space to fit the algorithm frame-
work. Reference [134] proposes an ANN-based stochastic policy to handle both discrete
and continuous actions, combining a Bernoulli policy for on/off switch actions and a
Gaussian policy for continuous actions.

TABLE III: Literature Summary on Learning for Energy Management.

Reference Problem
State/Action

Space
Algorithm

Policy

Class Key Features

Ye et al.

2020 [107]

IES manage‐

ment
Hybrid

DDPG (actor-

critic)

Gaussian

policy

The prioritized experi‐

ence replay method is

used to enhance the

sampling efficiency of

the experience replay

mechanism.

Xu et al.

2021 [106]

IES manage‐

ment
Discrete �-learning

Stochastic

policy

RL-based differential

evolution algorithms

are developed to solve

the complex IES

scheduling issue.

Yan et al.

2020 [110]

Optimal

power flow
Continuous DDPG ANN

Rather than using the

critic network, the de‐

terministic gradient of

a Lagrangian-based

value function is de‐

rived analytically.

Woo et al.

2020 [112]

Optimal

power flow
Continuous

Twin delayed

DDPG
ANN

The appropriate re‐

ward vector in the

training process is set

to build decision poli‐

cies, considering

power system con‐

straints.

Zhou et al.

2020 [113]

Optimal

power flow
Continuous

Proximal pol‐

icy optimiza‐

tion

Gaussian

policy

Imitation learning is

adopted to generate

initial weights for

ANNs and proximal

policy optimization is

used to train a DRL

agent for fast OPF so‐

lution.

Hao et al.

2021 [117]

Microgrid

power dis‐

patch

Continuous
Hierarchical

RL

Two knowl‐

edge rule-

based poli‐

cies

1- Hierarchical RL is

used to reduce com‐

plexity and improve

learning efficiency; 2-

Incorporated with do‐

main knowledge, it

avoids baseline viola‐

tion and additional

learning beyond feasi‐

ble action space.

Lin et al.

2020 [115]

Power dis‐

patch
Continuous Soft A3C

Gaussian

policy

The edge computing

technique is employed

to accelerate the com‐

putation and communi‐

cation in a cloud envi‐

ronment.

Zhang et

al. 2020 [

116]

Distribution

power dis‐

patch

Continuous
Fitted �-itera‐

tion
�-greedy

The �-function is pa‐

rameterized by polyno‐

mial approximation

and optimized using a

regularized recursive

least square method

with a forgetting fac‐

tor.

Wan et al.

2019 [121]

EV charging

scheduling

Continuous/

discrete
Double DQN �-greedy

A representation net‐

work is constructed to

extract features from

the electricity price.

Li et al.

2020 [122]

EV charging

scheduling
Continuous

Constrained

policy opti‐

mization [123

]

Gaussian

policy

A constrained MDP is

formulated to schedule

the charging of an EV,

considering charging

constraints.

Silva et al.

2020 [139]

EV charging

scheduling
Discrete

Multi-agent

�-learning
�-greedy

Use multi-agent multi-

objective RL to mode

the EV charging coor‐

dination with the

�-learning method.

Bui et al.

2020 [125]

Battery man‐

agement

Hybrid/ dis‐

crete
Double DQN �-greedy

To mitigate the overes‐

timation problem, dou‐

ble DQN with a pri‐

mary network for ac‐

tion selection and a

target network is used.

Cao et al.

2020 [126]

Battery man‐

agement

Hybrid/ dis‐

crete
Double DQN Greedy

A hybrid CNN and

LSTM model is

adopted to predict the

future electricity price.

Yu et al.

2021 [130]

Building

HVAC
Continuous

Multi-actor-

attention-

critic

Stochastic

Policy

A scalable HVAC con‐

trol algorithm is pro‐

posed to solve the

Markov game based

on multi-agent DRL

with attention mecha‐

nism.

Gao et al.

2020 [129]

Building

HVAC
Continuous DDPG ANN

A feed-forward ANN

with Bayesian regular‐

ization is built for pre‐

dicting thermal com‐

fort.

Mocanu et

al. 2019 [

131]

Building en‐

ergy man‐

agement

Hybrid
DPG and

DQN
ANN

Both DPG and DQN

are implemented for

building energy con‐

trol and their perfor‐

mances are compared

numerically.

Xu et al.

2020 [133]
HEMS

Continuous/

discrete

Multi-agent

�-learning
�-greedy

Use extreme learning

machine based ANNs

to predict future PV

output and electricity

price.

Li et al.

2020 [134]
HEMS Hybrid

Trust region

policy opti‐

mization

ANNs-

based sto‐

chastic pol‐

icy

A policy network de‐

termines both discrete

actions (on/off switch

with Bernoulli policy)

and continuous actions

(power control with

Gaussian policy).

Alfaverh et

al. 2020 [

135]

HEMS Discrete �-learning
Stochastic

policy

Fuzzy sets and fuzzy

reasoning rules are

used to simplify the

action-state space.

Chen et al.

2021 [103]

Residential

load control
Continuous

Thompson

sampling

Stochastic

policy

Logistic regression is

employed to predict

customers’ opt-out be‐

haviors in demand re‐

sponse and Thompson

sampling is used for

online learning.

III-D Other Applications

In addition to the three critical applications above, other applications of RL in power
systems include electricity market [140, 141], network reconfiguration [142],  service
restoration [143, 144], emergency control [145], maximum power point tracking [146,
147], cyber security [148, 149], maintenance scheduling [150], protective relay control
[151], electric vehicle charging navigation [152], demand response customer selection
[153], power flexibility aggregation [154], etc.

III-E Numerical Implementation

In  this  subsection,  we  present  the  overall  procedure,  useful  tools,  and  available
testbeds for the numerical implementation of (D)RL in power system applications. The
implementation procedure generally comprises the following three steps:

III-E1 Environment Setup

First, an environment simulator specifying states, actions, observations, and internal
transition needs to be built to simulate the real system and applications. The OpenAI
Gym [155] is a prominent toolkit that provides many simulation environments of physi-
cal systems, games, and robots for RL research. As for power system applications, most
existing works build their own synthetic environments to train and test RL algorithms
based on standard IEEE test systems or real power grids. In [156], a framework called
Gym-ANM is developed to establish RL environments for active network management

tasks in distribution systems. Besides, the Gird2Op framework

is  an  open-source  environment  for  training  RL  agents  to  operate  power  networks,
which is the testbed for the Learning to Run a Power Network (L2RPN) challenge [157].
Other recently developed RL environments include RLGC [145] for power system con-
trol,  gymgrid [158]  and  OMG [159]  for  microgrid  simulation  and  control,  and
PowerGym [160] for voltage control in distribution systems, etc. A variety of test sys-
tems and test cases are available in these environments.

III-E2 Agent Setup

Then, one needs to create an agent (or agents) that specifies the reward function, RL
methods, and policies to interact with the environment, i.e., receiving observations and
taking control  actions.  For  the  implementation of  DRL with ANNs,  the  mainstream
open-source  deep  learning  frameworks  include  TensorFlow [161],  PyTorch [162],

Keras

, MXNet

, CNTK[163], etc. Building on top of these deep learning frameworks, there are several

widely-used open-source RL libraries, such as Tensorforce

, Stable Baselines

, RL Coach, KerasRL, TF Agents, etc., which basically cover the implementation of all
state-of-the-art RL algorithms.

III-E3 Agent Training and Testing

With the environment and the agent in place, the embedded functions in the RL frame-
works introduced above can be directly used to train and test the agent, or researchers
can code their own implementation with tailored designs. Besides, there are some com-
mercial toolboxes available for RL implementation. For examples, the MathWorks RL
toolbox [164] can be used to build and train agents under the environments modeled in
Matlab or Simulink.

IV CHALLENGES AND PERSPECTIVES

This section presents the critical challenges of using RL in power system applications,
i.e., safety and robustness, scalability, and data. Several future directions are then dis-
cussed.

IV-A Safety and Robustness

Power systems are vital infrastructures of modern societies. Hence, it is necessary to
ensure that the applied controllers are safe, in the sense that they do not drive the
power system operational states to violate critical physical constraints, or cause insta-
bility or reliability issues. Regarding RL-based control schemes, there are two aspects
of safety concern:

1) Guarantee that the learning process is safe (also referred to as safe exploration). For
this issue, off-policy RL methods [90] are more desirable, where the training data are
generated from existing controllers that are known to be safe. In contrast, it remains
an open question for on-policy RL to guarantee safe exploration. Some attempts [165,
166, 167, 168] propose safe on-policy exploration schemes based on Lyapunov criterion
and Gaussian process. The basic idea is to construct a certain safety region, and special
actions are taken to drive the state back once approaching the boundary of this safety
region. See [169] for a comprehensive survey on safe RL. However, almost all the exist-
ing works train their RL control policies only based on high-fidelity power system sim-
ulators,  and  it  is  plausible  that  the  safe  exploration  problem  is  circumvented.
Nevertheless, one can argue that there might be a substantial gap between the simula-
tor and the real-world system, leading to the failure of generalization in real imple-
mentation. A possible remedy is to employ the robust (adversarial) RL methods [170,
97, 96] in simulator-based policy training.

2) Guarantee that the final learned control policy is safe. It is generally hard to verify
whether a policy is safe or the generated actions can respect physical operational con-
straints. Some common methods to deal with constraints include 1) formulating the
constraint  violation as  a  penalty  term to  the reward,  2)  training the control  policy
based on a constrained MDP [93, 122], 3) adding a heuristic safety layer to adjust the ac-
tions such that the constraints are respected. Specifically, the second method aims to
learn an optimal policy �* that maximizes the expected total return �(�) and is subject
to a budget constraint:

�* ∈ arg max
�
�(�), s.t. � �(�) ≤ �,

where � �(�) is the expected total cost and � is the budget. By defining the physical con-
straint violation as certain costs in � �(�), (32) imposes safety requirements to some de-
grees.  Typical  approaches  to  solve  the  constrained  MDP  problem  (32)  include  the
Lagrangian methods [93, 171], constrained policy update rules [123], etc.

We briefly introduce three related RL variants below, i.e., constrained RL, adversarial
RL, and robust RL.

∙ Constrained RL deals with the safety issue and constraints. Two types of constraints,
i.e., soft and hard constraints, are generally considered in the literature. The common
ways to handle soft constraints include 1) using barrier functions or penalty functions
to integrate the constraints to the reward function [172]; 2) modeling as a chance con-
straint (i.e., the probability of constraint violation is no larger than a predefined thresh-
old) [173, 174] or a budget constraint (such as the constraint in model (32)) [175, 176].
In terms of hard constraints, the predominant approach is to take conservative actions
to ensure that the hard constraints are satisfied at all times, despite the problem uncer-
tainties [177]. However, such schemes usually lead to conservativeness and may not
work well when the underlying system is complex.

∙ Adversarial RL [97, 178] adopts a two-player game structure where the learner agent
learns to take actions against an adversarial agent whose objective is different from or
even opposite to the learner agent. When applying adversarial RL to the power system
cyber security problem [179, 180, 181], one can model the cyber attacker as the adver-
sarial agent, whose attack actions, attack schemes, and payoffs depend on the practical
settings.  Reference [180]  formulates a repeated game to mimic the interactions be-
tween the attackers and defenders in power systems.  Reference [181]  proposes  an
agent-specific adversary MDP to learn an adversarial policy and uses it to improve the
robustness of RL methods via adversarial training.

∙ Robust RL [170, 182] employs a min-max framework to learn robust control policies,
where “min” corresponds to the learner and “max” corresponds to the adversary. The
adversary is generally designed to choose uncertain parameters (e.g. future renewable
generation) from an uncertainty set or select the worst-case scenarios from a prede-
fined contingency event set. Embedding the min-max  structure in RL algorithms has
been an active research area. Early studies [183, 184] focus on robust MDP with uncer-
tain parameters. Recent work [185] extends single-agent robust RL [182, 186] to deal
with parametric uncertainty in multi-agent RL. Applying robust RL to power system ap-
plications is an important future direction to deal with parametric uncertainties, data
errors, and mismatches between simulators and real-world systems.

IV-B Scalability

It is observed that most existing studies run simulations and tests on small-scale power
systems with a few decision-making agents.  To the best  of  our knowledge,  no real-
world implementation of RL control schemes has been reported yet. A crucial limita-
tion for RL in large-scale multi-agent systems, such as power systems, is the scalability
issue, since the state and action spaces expand dramatically as the number of agents in-
creases, known as “curse of dimensionality”. Multi-agent RL and function approxima-
tion techniques are useful for improving the scalability, while they are still under de-
velopment with many limitations. For example, there are limited provable guarantees
on how well �-function can be approximated with ANNs, and it is unclear whether it
works for real-size power grids. Moreover, even though each agent can deploy a local
policy to determine its own action, most existing multi-agent RL methods still need cen-
tralized learning among all the agents because the �-function depends on the global
state and all agents’ actions. One potential direction to enable distributed learning is to
leverage local dependency properties (e.g.,  the fast decaying property) to find near-
optimal localized policies [187, 188]. Besides, some application-specific approximation
methods can be utilized to design scalable RL algorithms. For instance, reference [90]
develops a scalable LSPI-based voltage control scheme, which sequentially learns an
approximate �-function for each component of the action, when the other components
are assumed to behave greedily according to their own approximate �-functions.

IV-C Data

IV-C1 Data Quantity, Quality, and Availability

Evaluating the amount of data needed for training a good policy, namely sample com-
plexity, is a challenging and active research area in the RL community. For classical RL
algorithms, such as �-learning, the sample complexity depends on the size of the state
and action spaces; the larger the state and action spaces are, the more data are gener-
ally needed to find a near-optimal policy [25, 189]. For modern RL methods commonly
used in power systems, such as DQN and actor-critic, the sample complexity also de-
pends on the complexity of the function class adopted to approximate the �-function
and the intrinsic approximation error of the function class [48, 190]. In addition, data
quality is one of the critical factors affecting learning efficiency. Real measurement and
operational data of power grids suffer from various issues, such as missing data, out-
lier data, noisy data, etc., thus a pre-processing on raw data is needed. Theoretically,
larger variance in noisy observations typically leads to higher sample complexity for
achieving a certain level of accuracy. Besides, almost all the references reviewed above
assume that high-fidelity simulators or accurate environment models are available to
simulate the system dynamics and response, which are the sources of sample data for
training and testing RL policies. When such simulators are unavailable, data availabil-
ity becomes an issue for the application of on-policy RL algorithms.

IV-C2 Potential Directions to Address Data Issues

Despite  successful  simulation results,  theoretical  understanding of  the sample com-
plexity of modern RL algorithms is limited. In addition, many power system applica-
tions use multi-agent training methods with partial observation and adopt ANNs for
function approximation, further complicating the theoretical analysis. A key solution to
improve  the  sample  complexity  of  training  RL  policies  is  the  use  of  warm  starts.
Empirical results [191] validate that good initialization can significantly enhance train-
ing efficiency. There are multiple ways to achieve a warm start, such as 1) utilizing ex-
isting controllers for pre-training [58, 192], 2) encoding domain knowledge into the de-
sign of control policies [191],  3) transfer learning [99]  that  transplants well-trained
policies to a similar task to avoid learning from scratch, 4) imitation learning [193] that
learns from available demonstrations or expert systems, etc.

In terms of data availability and quality, one can deal with them from algorithmic and
physical levels. At the algorithmic level, when high-fidelity simulators are unavailable,
a potential solution is to construct training samples from existing system operational
data and employ off-policy RL methods to learn control policies. Other training tech-
niques such as generating virtual samples from limited data to boost the data availabil-
ity [90] can also be adopted. There have been extensive studies on data quality im-
provement in the data science field, such as data sanity check, missing data imputation,
bad data identification, etc. At the physical level, 1) deploying more advanced sensors
and smart meters and 2) upgrading communication infrastructure and technologies
can improve data availability and quality at the source.

IV-C3 Standardized Dataset and Testbed

Existing works in the power literature mostly use synthetic test systems and datasets to
simulate and test the proposed RL-based algorithms, and they may not provide many
implementation  details  and  codes.  Hence,  it  is  necessary  to  develop  benchmark
datasets and authoritative testbeds for power system applications to standardize the
testing of RL algorithms and facilitate fair performance comparison. We summarize
several available RL environments for power system applications in Section III-E.

IV-C4 Big Data Techniques

The big data in smart grids include 1) measurement data from SCADA, PMUs, AMI, and
other advanced metering facilities, 2) electricity market pricing and bidding data, 3)
equipment monitoring, control, maintenance, and management data, 4) meteorological
data, etc. They can benefit the application of data-driven RL in various ways [194]. For
example, big data mining techniques for knowledge discovery can be adopted to detect
special  events,  determine  effective  observations,  and  identify  critical  latent  states.
Pattern extraction from massive datasets can be utilized to classify and cluster similar
events, agents and user behaviors, to improve the data efficiency of RL algorithms.

IV-D Other Key Future Directions

Regarding the challenges in applying RL to power systems, we present several potential
future directions as below.

IV-D1 Integrate Model-free and Model-based Methods

Actual power system operation is not a black box and has abundant model information
to use. Purely model-free approaches may be too radical to exploit available informa-
tion and suffer from their own limitations, such as the safety and scalability issues dis-
cussed above. Since existing model-based methods have already been well studied in
theory and applied in the industry with acceptable performance, one promising future
direction is to combine model-based and model-free methods for complementarity and
achieve both advantages. For instance, model-based methods can serve as warm-starts
or the nominal model, or be adopted to identify critical features for model-free meth-
ods. Besides, model-free methods can coordinate and adjust the parameters of incum-
bent model-based controllers to improve their adaptivity with baseline performance
guarantees. Reference [195] summarizes three potential integration ways: implement-
ing model-based and model-free methods in serial, in parallel, or embedding one as an
inner module in the other. Despite limited work, e.g. [192, 196], on this subject so far,
integrating model-free RL with existing model-based control schemes is envisioned to
be an important future direction.

IV-D2 Exploit Suitable RL Variants

RL is a fundamental and vibrant research field attracting a great deal of attention. New
advances in RL algorithms appear frequently. Besides DRL, multi-agent RL, and robust
RL mentioned above, a wide range of branches in the RL field, such as transfer RL [99],
meta RL [197], federated RL [198], inverse RL [37], integral RL [13], Bayesian RL [199],
hierarchical RL [200], interpretable RL [201], etc., can improve the learning efficiency
and tackle specific problems in suitable application scenarios. For instance, transfer RL
can be used to transplant the well-trained policies for one task to another similar task,
so that it does not have to learn from scratch and thus can enhance the training effi-
ciency.

IV-D3 Leverage Domain Knowledge and Problem Structures

The naive application of existing RL algorithms may encounter many troubles in prac-
tice. In addition to algorithmic advances, leveraging domain knowledge and exploiting
application-specific structures to design tailored RL algorithms are necessary to achieve
superior  performance.  Specifically,  domain  knowledge  and  empirical  evidence  can
guide the definition of state and reward, the initialization of the policy, and the selec-
tion of RL algorithms. For example, the area control error (ACE) signal is often used as
the state in RL-based frequency regulation. Besides, the specific problem structures are
useful in determining the policy class, approximation function class, hyperparameters,
etc., to improve training efficiency and provide performance guarantees. For example,
reference [57] leverages two special properties of the frequency regulation problem
and designs the policy network in a particular structure to ensure the stability of the
resultant RL controllers.

IV-D4 Satisfy Practical Requirements

The following concrete requirements on RL-based methods need to be met to enable
practical implementation in power systems.

• As discussed above, the safety, scalability, and data issues of RL-based methods need
to be addressed.

• RL-based algorithms should be robust  to the noises and failures in measurement,
communication, computation, and actuation, to ensure reliable operation.

• To be used with confidence, RL-based methods need to be interpretable and have the-
oretical performance guarantee.

• Since RL requires a large amount data from multi-stakeholders,  the data privacy
should be preserved.

• As power systems generally operate under normal conditions,  it  remains an un-
solved problem to ensure that RL control policies learned from real system data
have sufficient exploration and perform well in extreme scenarios.

• Since  RL-based  approaches  heavily  rely  on  information  flow,  the  cyber  security
should be guaranteed under various malicious cyber attacks.

• Existing RL-based algorithms mostly take tens of thousands of iterations to converge,
which suggests that the training efficiency needs to be improved.

• Necessary  computing  resources,  communications  infrastructure  and  technology
need to be deployed and upgraded to support the application of RL schemes. We
elaborate on this requirement below.

In many existing works, multi-agent DRL is used to develop scalable control algorithms
with centralized (offline) training and decentralized (online) implementation. To en-
able centralized training of DRL, the coordination center needs large-scale data storage,
high-performance computers,  and advanced computing techologies,  such as acceler-
ated computing (e.g., GPUs), cloud and edge computing, etc. As for decentralized or dis-
tributed implementation,  although the computational burden is  lighter,  each device
(agent) typically requires local sensors, meters, microchip-embedded solvers, and auto-
mated actuators. Moreover, to support the application of DRL, advanced communica-
tion infrastructures are necessary to enable the two-way communication and real-time
streaming of high-fidelity data from massive devices. Various communication and net-
working technologies, such as (optic) cable lines, power line carrier, cellular, satellite,
5G, WiMAX, WiFi, Xbee, Zigbee, etc., can be used for different RL applications. In short,
both algorithmic advances and infrastructure development are envisioned to facilitate
the practical application of RL schemes.

V CONCLUSION

Although a number of works have been devoted to applying RL to the power system
field, many critical problems remain unsolved, and there is still a substantial distance
from practical implementation. On the one hand, this subject is new and still under de-
velopment and needs much more studies. On the other hand, it is time to step back and
rethink the advantages and limitations of applying RL to power systems (the world’s
most complex and vital engineered systems) and figure out where and when to use RL.
In fact, RL is not envisioned to completely replace existing model-based methods but a
viable alternative in specific tasks. For instance, RL and other data-driven methods are
promising when the models are too complex to be useful or when the problems are in-
trinsically hard to model, such as the human-in-loop control (e.g., in demand response).
It is highly expected to identify the right application scenarios for RL and use it appro-
priately.

Appendix A System Frequency Dynamics

According to [72, 69, 56], the system frequency dynamics (17) can be linearized as (A),
including the generator swing dynamics (33a) and power flow dynamics (33b).
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where ��,��, ��� denote the generator inertia, damping coefficient, and synchronization
coefficient, respectively. Besides, the governor-turbine control model (18) for a genera-
tor can be simplified as (A), including the turbine dynamics (34a) and the governor dy-
namics (34b):
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where Δ��
� is the turbine valve position deviation, and ��

�  is  the generation control
command. ��

tur,��
gov denote the turbine and governor time constants, and �� is the droop

coefficient.
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