
READING GROUP ON REINFORCEMENT LEARNING - HI! PARIS
GRAPH CONVOLUTIONAL POLICY NETWORK FOR GOAL-DIRECTED MOLECULAR GRAPH

GENERATION

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay S. Pande, Jure Leskovec

Stanford University
Published @NeurIPS 2018 (∼700 citations)

Outline
1. Brief introduction to RL (C. Laclau)
2. Presentation of the paper (C. Laclau)
3. Demo (G. Brison)

MACHINE LEARNING SETTINGS1

Supervised Learning

Input: (x, y) where x is the predictor and y is a given label.
Goal Learn a function f : x :→ y
Examples: classification, regression

Unsupervised Learning

Input: x, no labels
Goal: Learn some underlying hidden structure of the data
Examples: clustering, dimensionality reduction, feature learning

Reinforcement Learning

Input: an agent interacting with an environment, which provides numeric reward signals
Goal : learn how to take action in order to maximize rewards

1inspired from Fei-Fei Li (Standford course)
1 / 31

MACHINE LEARNING SETTINGS1

Supervised Learning

Input: (x, y) where x is the predictor and y is a given label.
Goal Learn a function f : x :→ y
Examples: classification, regression

Unsupervised Learning

Input: x, no labels
Goal: Learn some underlying hidden structure of the data
Examples: clustering, dimensionality reduction, feature learning

Reinforcement Learning

Input: an agent interacting with an environment, which provides numeric reward signals
Goal : learn how to take action in order to maximize rewards

1inspired from Fei-Fei Li (Standford course)
1 / 31

MACHINE LEARNING SETTINGS1

Supervised Learning

Input: (x, y) where x is the predictor and y is a given label.
Goal Learn a function f : x :→ y
Examples: classification, regression

Unsupervised Learning

Input: x, no labels
Goal: Learn some underlying hidden structure of the data
Examples: clustering, dimensionality reduction, feature learning

Reinforcement Learning

Input: an agent interacting with an environment, which provides numeric reward signals
Goal : learn how to take action in order to maximize rewards

1inspired from Fei-Fei Li (Standford course)
1 / 31

WHERE TO START? SOME USEFUL RESOURCES

▶ Course by David Silver
https://www.davidsilver.uk/wp-content/uploads/2020/03/intro_RL.pdf

▶ Course UCL × DeepMind by Hado van Hasselt (available on Youtube)
▶ Reinforcement Learning: an Introduction [Sutton & Barto]

https://web.stanford.edu/class/psych209/Readings/
SuttonBartoIPRLBook2ndEd.pdf

▶ Lilian Weng’s blog post - A (Long) Peek into Reinforcement Learning
https:
//lilianweng.github.io/posts/2018-02-19-rl-overview/#key-concepts

▶ Andrej Karpathy’s blog post - Deep Reinforcement Learning: Pong from Pixels
http://karpathy.github.io/2016/05/31/rl/

2 / 31

https://www.davidsilver.uk/wp-content/uploads/2020/03/intro_RL.pdf
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://lilianweng.github.io/posts/2018-02-19-rl-overview/##key-concepts
https://lilianweng.github.io/posts/2018-02-19-rl-overview/##key-concepts
http://karpathy.github.io/2016/05/31/rl/

WHAT IS REINFORCEMENT LEARNING? 2

Observations

▶ People (and animals) learn by interacting with our environment
▶ We are goal oriented
▶ We can learn without examples of optimal behaviour
▶ Instead we optimize some reward signal

Differs from other learning scenario

▶ RL is active rather than passive
▶ Interactions are often sequential - future interaction can depend on earlier ones

2Slide from DeepMind x UCL RL Lecture Series
3 / 31

REINFORCEMENT LEARNING
THE INTERACTION LOOP 3

Goal: optimize sum of rewards, through repeated interactions

3Slide from DeepMind x UCL RL Lecture Series 4 / 31

REINFORCEMENT LEARNING
THE INTERACTION LOOP 3

Goal: optimize sum of rewards, through repeated interactions
3Slide from DeepMind x UCL RL Lecture Series 4 / 31

REINFORCEMENT LEARNING
REWARDS

Reward Hypothesis

Any goal can be formalized as the outcome of maximizing a cumulative reward

Examples of RL problems
▶ Fly a helicopter
▶ Manage an investment portfolio
▶ Control a power station
▶ Make a robot walk
▶ Play video or board games

Rewards
→ air time, inverse distance
→ gains, gains minus risk
→ efficiency
→ distance, speed
→ win, maximize scores

5 / 31

REINFORCEMENT LEARNING

General definition

Science and framework of learning to make decisions from interactions

There are different reasons to learn
1. Find solutions

• a program that plays chess very well
• a robot that can learn to navigate unknowns terrains

2. Adapt online, deal with unseen circumstances
• a chess program that can learn how to adapt to you
• a robot that can learn to navigate unknown terrains

▶ Reinforcement learning can provide algorithms for both case

▶ This requires us to think about
• ... time
• ... (long term) consequences of actions
• ... actively gathering experiences
• ... predicting the future
• ... dealing with uncertainty

6 / 31

REINFORCEMENT LEARNING

General definition

Science and framework of learning to make decisions from interactions

There are different reasons to learn
1. Find solutions

• a program that plays chess very well
• a robot that can learn to navigate unknowns terrains

2. Adapt online, deal with unseen circumstances
• a chess program that can learn how to adapt to you
• a robot that can learn to navigate unknown terrains

▶ Reinforcement learning can provide algorithms for both case
▶ This requires us to think about

• ... time

• ... (long term) consequences of actions
• ... actively gathering experiences
• ... predicting the future
• ... dealing with uncertainty

6 / 31

REINFORCEMENT LEARNING

General definition

Science and framework of learning to make decisions from interactions

There are different reasons to learn
1. Find solutions

• a program that plays chess very well
• a robot that can learn to navigate unknowns terrains

2. Adapt online, deal with unseen circumstances
• a chess program that can learn how to adapt to you
• a robot that can learn to navigate unknown terrains

▶ Reinforcement learning can provide algorithms for both case
▶ This requires us to think about

• ... time
• ... (long term) consequences of actions

• ... actively gathering experiences
• ... predicting the future
• ... dealing with uncertainty

6 / 31

REINFORCEMENT LEARNING

General definition

Science and framework of learning to make decisions from interactions

There are different reasons to learn
1. Find solutions

• a program that plays chess very well
• a robot that can learn to navigate unknowns terrains

2. Adapt online, deal with unseen circumstances
• a chess program that can learn how to adapt to you
• a robot that can learn to navigate unknown terrains

▶ Reinforcement learning can provide algorithms for both case
▶ This requires us to think about

• ... time
• ... (long term) consequences of actions
• ... actively gathering experiences

• ... predicting the future
• ... dealing with uncertainty

6 / 31

REINFORCEMENT LEARNING

General definition

Science and framework of learning to make decisions from interactions

There are different reasons to learn
1. Find solutions

• a program that plays chess very well
• a robot that can learn to navigate unknowns terrains

2. Adapt online, deal with unseen circumstances
• a chess program that can learn how to adapt to you
• a robot that can learn to navigate unknown terrains

▶ Reinforcement learning can provide algorithms for both case
▶ This requires us to think about

• ... time
• ... (long term) consequences of actions
• ... actively gathering experiences
• ... predicting the future

• ... dealing with uncertainty

6 / 31

REINFORCEMENT LEARNING

General definition

Science and framework of learning to make decisions from interactions

There are different reasons to learn
1. Find solutions

• a program that plays chess very well
• a robot that can learn to navigate unknowns terrains

2. Adapt online, deal with unseen circumstances
• a chess program that can learn how to adapt to you
• a robot that can learn to navigate unknown terrains

▶ Reinforcement learning can provide algorithms for both case
▶ This requires us to think about

• ... time
• ... (long term) consequences of actions
• ... actively gathering experiences
• ... predicting the future
• ... dealing with uncertainty

6 / 31

REINFORCEMENT LEARNING
FORMALISING THE RL PROBLEM4

4Section 3.2 in the paper
7 / 31

REINFORCEMENT LEARNING
FORMALISING THE RL PROBLEM

▶ S = st is the set of states
▶ A = at is the set of actions
▶ P is the transition dynamics P(st+1|st, · · · , s0, at)

▶ Rt the reward, is a scalar feedback signal
• Indicated how well (or bad) the agent is doing at each step t - defines the goal
• The agent’s job is to maximize the cumulative reward

Gt = Rt+1 + Rt+2 + Rt+3 + . . .

▶ Episode (also known as trial or trajectory) fully describe an interaction sequence up to a terminal
state T

s0, a0, r0, s1, · · · , sT

Policy

▶ A policy defines the agent’s behaviour: it maps from an agent’s state to an action
• Deterministic policy: A = π(S)
• Stochastic policy: π(A|S) = p(A|S)

8 / 31

REINFORCEMENT LEARNING
ADDITIONAL OBSERVATIONS

Goal: select actions to maximise value

▶ Actions may have long term consequences
▶ Reward may be delayed
▶ It may be better to sacrifice immediate reward to gain more long-term reward

Examples:

▶ Refueling a helicopter (might prevent a crash in several hours)
▶ Defensive moves in a game (may help chances of winning later)
▶ Learning a new skill (can be costly & time-consuming at first)

9 / 31

REINFORCEMENT LEARNING
MARKOV DECISION PROCESS

All the RL problems can be framed as Markov Decision Processes (MDPs).
▶ All states in MDP has Markov property, referring to the fact that the future only depends on the

current state, not the history:

P(St+1|St] = P(St+1|S1, · · · ,St)

▶ A Markov decision process consists of five elements < S,A,P,R, γ > where
• S is a set of states
• A is a set of actions
• P is the transition probability function
• R is a reward function
• γ is a discounting factor for future rewards

10 / 31

REINFORCEMENT LEARNING
LEARNING THE BEST POLICY

Value Function

▶ Measures the goodness of a state or how rewarding a state or an action is by a prediction of
future reward, i.e. the return

Gt = Rt+1 + γRt+2 + . . . =

∞∑
k=0

γkRt+k+1

▶ The discounting factor γ penalize the rewards in the future
▶ The state-value of a state s is the expected return if we are in this state at time t

Vπ(s) = Eπ[Gt|S = st]

▶ The action-value (Q-value) of a state-action pair as:

Qπ(s, a) = Eπ[Gt|S = st,A = at]

Popular algorithms to learn the optimal policy

▶ Q-learning, Policy gradient, Proximal Policy Gradient

11 / 31

REINFORCEMENT LEARNING
LEARNING THE BEST POLICY

Value Function

▶ Measures the goodness of a state or how rewarding a state or an action is by a prediction of
future reward, i.e. the return

Gt = Rt+1 + γRt+2 + . . . =

∞∑
k=0

γkRt+k+1

▶ The discounting factor γ penalize the rewards in the future
▶ The state-value of a state s is the expected return if we are in this state at time t

Vπ(s) = Eπ[Gt|S = st]

▶ The action-value (Q-value) of a state-action pair as:

Qπ(s, a) = Eπ[Gt|S = st,A = at]

Popular algorithms to learn the optimal policy

▶ Q-learning, Policy gradient, Proximal Policy Gradient
11 / 31

DEEP REINFORCEMENT LEARNING 5

▶ Let’s consider the example of Pong
▶ Input : an image frame (a 210x160x3 byte array)
▶ Actions: move up or down
▶ Reward: +1 if the ball went past the opponent (win), -1 if we missed the ball (loose), 0 otherwise

(game continue)

5Example is taken from the really good blog post of http://karpathy.github.io/2016/05/31/rl/
12 / 31

http://karpathy.github.io/2016/05/31/rl/

DEEP REINFORCEMENT LEARNING 6

Let’s implement our agent as a policy network

▶ Sample an action from the output distribution of the network → execute that action in the game

▶ Wait until the end of the game, then take the reward we get (either +1 if we won or -1 if we
lost), and update the gradients accordingly

6Example is taken from the really good blog post of http://karpathy.github.io/2016/05/31/rl/
13 / 31

http://karpathy.github.io/2016/05/31/rl/

DEEP REINFORCEMENT LEARNING 6

Let’s implement our agent as a policy network

▶ Sample an action from the output distribution of the network → execute that action in the game
▶ Wait until the end of the game, then take the reward we get (either +1 if we won or -1 if we

lost), and update the gradients accordingly

6Example is taken from the really good blog post of http://karpathy.github.io/2016/05/31/rl/
13 / 31

http://karpathy.github.io/2016/05/31/rl/

DEEP REINFORCMENT LEARNING 7

▶ With Policy Gradients we would take the two games we won and slightly encourage every
single action we made in that episode.

▶ Conversely, we would also take the two games we lost and slightly discourage every single
action we made in that episode.

▶ Similar to supervised learning, but on a continuously changing dataset (the episodes), scaled by
the advantage, and we only want to do one (or very few) updates based on each sampled
dataset.

7Example is taken from the really good blog post of http://karpathy.github.io/2016/05/31/rl/
14 / 31

http://karpathy.github.io/2016/05/31/rl/

TODAY’S PAPER

15 / 31

RL FOR DRUG DISCOVERY

Research Question

Can we learn a model that can generate valid and realistic molecules with optimized
property scores ?

▶ valid = obeys the rules of chemistry
▶ realistic = looks like a drug (no Frankenstein type molecule)
▶ optimize: e.g. maximize a score

16 / 31

KEY COMPONENTS

Graph Convolution Policy Network

Combine Graph Neural Network and Reinforcement Learning

▶ Graph Neural Networks captures the graph structural information
▶ Reinforcement Learning guides the generation toward the desired objectives
▶ Supervised Learning imitates examples from a given dataset

17 / 31

GRAPH GENERATION AS A RL PROBLEM

▶ Agent = Graph Neural Network (policy network)
▶ Actions = add a bond (of a certain type) between two atoms

• validity: infeasible actions proposed by the policy network are rejected and the state remains
unchanged

▶ States = all intermediate graphs and the final graph {G0, · · · ,Gn} → fully observable
▶ State transition dynamic: domain-specific rules are incorporated in the state transition

dynamics → the environment carries out actions that obey the given rules
▶ Primary objective = optimize a given property S(G), ie, ES′ [G(S′)]

▶ Secondary objective = add prior knowledge using training examples

18 / 31

GCPN - OVERALL PICTURE 8

(a) Insert new nodes
(b), (c) Use GNN to predict which nodes to connect

(d) Take an action (check validity)
(e), (f) Compute rewards

8Slide from Leskovec
19 / 31

GCPN - OVERALL PICTURE 9

▶ Step rewards: learn to take valid actions
• At each step, assign small positive reward for valid action

▶ Final reward: optimize desired properties
• At the end, assign positive reward for high desired property
• Reward: step rewards + final rewards

9Slide from Leskovec
20 / 31

GCPN - OVERALL PICTURE 10

Training in two parts

▶ Supervised Training: train policy by imitating the action given by a real observed graph
(gradient based)

▶ RL training: Train policy to optimize rewards (standard policy gradient algorithm)

10Slide from Leskovec
21 / 31

GCPN OVERALL PICTURE 11

11Slide from Leskovec
22 / 31

DETAILS ON REWARD DESIGN

WARNING: I’m not sure of this part!

Intermediate Reward

▶ Small reward for chemical validity (valency rule) otherwise a small negative reward is applied
▶ Adversarial reward for realistic molecules (w.r.t to some training set)

Final Reward

▶ Calculated when the trajectory stops
▶ Domain-specific rewards: combination of final property scores + penalization of unrealistic

molecules (eg. excessive steric strain)
▶ Final reward = Domain-specific rewards + Adversarial rewards

23 / 31

THE ADVERSARIAL REWARD

▶ Idea: use a training set of molecules to integrate prior knowledge with Generative Adversarial
Network (GAN)

24 / 31

THE ADVERSARIAL REWARD

▶ Idea: use a training set of molecules to integrate prior knowledge with Generative Adversarial
Network (GAN)

24 / 31

DETAILS ON (B)GCPN

Graph Convolutional Network (GCN) to learn node embedding

25 / 31

DETAILS ON (B)GCPN

From node embeddings to taking actions

▶ An action at is a concatenation of four components: selection of two nodes, prediction of edge
type, and prediction of termination.

▶ Each component is sampled according to a predicted distribution governed

26 / 31

EXAMPLE FOR PREVIOUS SLIDE

27 / 31

POLICY GRADIENT TRAINING

Policy Gradient objective

▶ The advantage Ât is an estimation of the relative value for at in current state st.

At = Q(st, at)− V(st)

▶ Quantify the extra reward that could be obtained by the agent by taking a particular action
▶ Â positive means that the actions the agent took in the sample trajectory resulted in better than

average return
• policy gradient would be positive to increase the probability of selecting these actions

again when we encounter a similar state

▶ Destructively large policy updates: risk of updating the parameters too far

28 / 31

POLICY GRADIENT TRAINING

Policy Gradient objective

▶ The advantage Ât is an estimation of the relative value for at in current state st.

At = Q(st, at)− V(st)

▶ Quantify the extra reward that could be obtained by the agent by taking a particular action
▶ Â positive means that the actions the agent took in the sample trajectory resulted in better than

average return
• policy gradient would be positive to increase the probability of selecting these actions

again when we encounter a similar state
▶ Destructively large policy updates: risk of updating the parameters too far

28 / 31

POLICY GRADIENT TRAINING

Proximal Policy Gradient (implemented by OpenAI)

▶ Idea: limit the policy gradient step so it does not move too much away from the original policy
– Trust Region Policy Optimization (Schulman et al, 2015)

r(θ) =
πθ(at|st)

πθold(at|st)

▶ PPO clip objective

29 / 31

SUPERVISED TRAINING: EXPERT POLICY

30 / 31

EXPERIMENTS (MORE DETAILS TO COME)

31 / 31

	Reinforcement Learning
	

