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Privacy in Data Analysis



Massive datasets are a key element of
current technological revolution
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Massive datasets are a key element of
current technological revolution

Datasets often contain sensitive user data

Q: How to learn from data without infringing users’ privacy?



Privacy Attacks: The Netflix Case

+ Netflix Prize competition, US$1,000,000 (2006-09)

+ Goal: based on historical user scores, provide movie
recommendations for users

« Data: 100, 480, 507 ratings by ~ 500, 000 users on ~ 18, 000
movies



Privacy Attacks: The Netflix Case
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Privacy Attacks: The Netflix Case (cont'd)

* Anonymized data, in full accordance with the law
« Narayanan and Shmatikov, 2008 showed how cross references with
(public) IMDB exposed the identity of Netflix users



Privacy Attacks: The Netflix Case (cont'd)

* Anonymized data, in full accordance with the law
« Narayanan and Shmatikov, 2008 showed how cross references with
(public) IMDB exposed the identity of Netflix users
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Privacy in ML Models

« Perhaps releasing a private dataset is difficult
« But what about models?



Privacy in ML Models

« Perhaps releasing a private dataset is difficult

« But what about models?

« Even more modest ML models (SVM, linear regression, etc.) can
suffer from privacy risks
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Differential Privacy




Differential Privacy (DP)

Definition [Differential Privacy (DP)]

Two datasets S = (z1,...,2,)and S' = (2f,...,2,) in Z™ are
neighbors (denoted S ~ §') iff

There exists at most one i € [n] sit. z; # 2]



Differential Privacy (DP)

Definition [Differential Privacy (DP)]

Two datasets S = (z1,...,2,)and S' = (2f,...,2,) in Z™ are
neighbors (denoted S ~ §') iff

There exists at most one i € [n] sit. z; # 2]

Randomized algorithm A : Z" — X is (e, §)-differentially private if

P(A(S) € E) < e -P(A(S) € E) +6 (VS =~ §)(VE C X)



The Gaussian Mechanism

Start with a deterministic algorithm A : 2" — R?
e.g., empirical mean A(S) = 23" | z

Gaussian Mechanism
 Hypothesis: ¢5-sensitivity
A(S) — A(S )2 < Ag
« Mechanism:
Agauss(5) ~ N(A(S), 02)
 Guarantee: (¢,0)-DP
(for 02 = O(A31n(1/6)/€?)) L




The Gaussian Mechanism

Start with a deterministic algorithm A : 2" — R?
e.g., empirical mean A(S) = 23" | z

Gaussian Mechanism
 Hypothesis: ¢5-sensitivity
A(S) — A(S )2 < Ag
« Mechanism:
Agauss(5) ~ N(A(S), 02)
 Guarantee: (¢,0)-DP
(for 02 = O(A31n(1/6)/€?)) L

Note: Error of GM, E|A(S) — Agauss(9)|l2 = ©(Vdo)



Differentially Private Selection

Goal: Select the largest element from an array
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Differentially Private Selection

Goal: Select the largest element from an array

Report Noisy Max Mechanism
 Hypothesis: /,.-sensitivity
A(S) = A(S)loe < Aso
+ Guarantee: (¢,0)-DP




Differentially Private Selection

Goal: Select the largest element from an array

-7 2 3 8 6 6 7538 3 2

Max

Report Noisy Max Mechanism
 Hypothesis: /,.-sensitivity
A(S) = A(S)loe < Aso
+ Guarantee: (¢,0)-DP

* Mechanism: Agym(S) = argmax;cq) {Aj(S) + Lap(O,Aoo/s)}

* Accuracy: w.h.p. |[Arnm(S) — max;erq A(S)| = 0(@)

€3



Composition in Differential Privacy

« Let A1(95), A2(S,aq), ..., Ak(S,ax—1) mechanisms that are
(¢,6)-DP w.rt. their first input
« Define inductively, B; = A;, and

Bi(S) = A;(S,Bi_1(S)) (Vj=2,....k)




Composition in Differential Privacy

- Let A1(95), A2(S,a1), ..., Ax(S, ax_1) mechanisms that are
(g,0)-DP w.r.t. their first input

+ Define inductively, B; = A;, and

B;(S)=A;(S,B;—1(S)) (Vj=2,...,k)

(Bi,...,By) is (ke, k&)-DP



Composition in Differential Privacy

source: J. Ullman lecture notes

Theorem (Basic Composition)

(Bl, ao0g Bk) is (k?&‘, ké)'DP

Theorem (Advanced Composition) [Dwork, Rothblum & Vadhan:'10]
If k < 1/e2. Thenforany 0 < & <1, (By,...,By) is

(O(E\/W),k(s + 5’)-DP




Stochastic Convex Optimization




Stochastic Convex Optimization (SCO)

(sco) lliil\l_{F[\,(,l") .= Eyup|f(z,2)]} = F

« (R, ]| - |): d-dimensional normed space

* X C B),(0, D), compact and convex

* Z any set

+ D probability distribution supported on Z

10



Stochastic Convex Optimization (SCO)

(SCO) min{Fp(z) :=E,up|f(z,2)]} = Fp
reX

(RZ, || - ||): d-dimensional normed space

+ X C B)(0, D), compact and convex

* Z any set

« D probability distribution supported on Z

« Convex loss f(-, 2)

* Lo-Lipschitz: |f(z, 2) — f(y,2)| < Lollz -y

* L;-Lipschitz gradient: ||V f(z,2) — Vf(y, 2)|l« < Liljlz — y||

Recall dual norm: ||wl|. = sup,<;{w,x), and dual norm of || - [| is || - [l
(1/p+1/g=1)

10



Stochastic Convex Optimization (SCO)

(sco) llill\l_{F[\,(.l") :=E,p|f(x,2)]} = Ff

Excess Risk: Given data S = (zi,...,z,) "&" Dn

Does there exist an algorithm A : |, 2" — X sit.

n—oc

EaEspn | Fp(A(S)) — F5| — 0

excess (population) risk

10



Stochastic Convex Optimization (SCO): Excess Risk Rates

° ép-setup: H : ” = H : ”1)1 1<p<oo
p=1 p € (1,2] P € (2,00) p=00
[lnd 1 1 di » d
j—— 0 — i - ol

[Nemirovsky & Yudin:1983]

1"



Stochastic Convex Optimization (SCO): Excess Risk Rates

° ép-setup: H ’ ” = H ’ ”1)1 1<p<oo

PN p € (1,2] p € (2,00) P =00
Ind 1 . 1 d2» d
o(V5)| o (R | e mnlam S }) o (V)

[Nemirovsky & Yudin:1983]

+ Upper bounds are achieved by Stochastic Mirror Descent (SMD)
« Algorithms run with a single pass over the data: O(n) time
+ Not only in expectation, but w/high probability (regular norms)

1"



Differentially Private Stochastic
Convex Optimization (DP-SCO)




Differentially-Private Stochastic Convex Optimization (DP-SCO)

DP-SCO: Given data S = (zy,...,2,) "~ D"
Does there exist an (=, 0)-DP algorithm A : |J,, 2" — X sit.

> OO

E4Es-pn | Fp(A(S)) — Fp| =5 0

excess (population) risk

12



Differentially-Private Stochastic Convex Optimization (DP-SCO)

p Upper Bound Lower bound
1 O(\/M n (%y/fﬂ) Q(\/M N (i)z/s)
03 | ofyEr =) o+ )
(27 OO) O(dl/\z/ﬁl/p + dlsrlL/p) & (min{dl/}l/y’ (8731/11 dl’r:;/p })
00 O( %+m> Q(\/>_|_€n>
Notes: [BFTT:"19, AFKT:'21, BGN:"21, ABGMU:'22]

« (1-setup also requires smoothness

ck=1/(p—

1): strong convexity of £, 1 < p <2

+ Upper bounds also hold w/high probability
- For smooth case, algorithms are single pass and projection free




DP-SCO: /;-setup




Avoiding the Curse of Dimensionality in DP-SCO

Is the polynomial dimension-dependence in DP-SCO risk avoidable?

Optimal excess risk /,-setup [Bassily, Feldman, Talwar & Thakurta:'19]

o(ton( g5+ L120)

sco DP-ERM [BST:"14]

+ Need not to release high-dimensional vectors [Steinke & Ullman:'15]

13



Avoiding the Curse of Dimensionality in DP-SCO

Is the polynomial dimension-dependence in DP-SCO risk avoidable?

 Need not to release high-dimensional vectors [Steinke & Ullman:'15]
« There exists one optimization algorithm with implicit updates:
o' = arg min{(V f (), v) : v € ext(X)}

Conditional gradient (a.k.a. Frank-Wolfe) algorithm
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Avoiding the Curse of Dimensionality in DP-SCO

Is the polynomial dimension-dependence in DP-SCO risk avoidable?

« There exists one optimization algorithm with implicit updates:
o' = arg min{(V f(z"),v) : v € ext(X)}

Conditional gradient (a.k.a. Frank-Wolfe) algorithm

+ Can be made private by adding Laplace noise on each
(V f(z'),v), and minimizing the noisy evaluations

13



Avoiding the Curse of Dimensionality in DP-SCO

Is the polynomial dimension-dependence in DP-SCO risk avoidable?

« There exists one optimization algorithm with implicit updates:
o' = arg min{(V f(z"),v) : v € ext(X)}

Conditional gradient (a.k.a. Frank-Wolfe) algorithm

(Full-batch) Private FW on ERM achieves nearly-optimal error
[Talwar, Thakurta & Zhang:'14-"15]
« Conversion to SCO excess risk guarantees always suboptimal
Stochastic FW has suboptimal rates, even nonprivately!
[Hazan & Luo:"16]

13



Polyhedral Stochastic Frank-Wolfe w/Variance Reduction

Non-privately proposed in [Hassani, Karbasi, Mokhtari & Shen:"19; Zhang, Shen, Mokhtari, Hassani & Karbasi:'20]

g <+ minibatch gradient ~ VFp(z?) |
A <+ grad variation ~ VFp(x!)—VFp(zt~1)

Vi=(1-n) (V" +A) +ng

}

FrankWolfeUpdate(V, =)

= 1 v’
o= e (Y.l

il «— (1 - pat +

VarianceReducedGradient(A, g, Vi~1) }

14



Polyhedral Stochastic Frank-Wolfe w/Variance Reduction

Poly-SFW [Bassily, G. & Nandi:'21]
Starting batch size: n/2 (— sensitivity control)
Batch size 1 for updates (— n/2 iterations)

g <+ minibatch gradient ~ VFp(z?) I
A + grad variation ~ VFp(zt) —VFp(x!™1)

VarianceReducedGradient(A, g, V!~1)
Vi=(1-n)(V"1+A) +ng

}

PrivateFrankWolfeUpdate(V, 2?)

v = arvgerg)l(ltr(lx) [(V,v)+Lap(2t/nlog(1/4))]

il «— (1 - pat +

Note: s; is the sensitivity of (V¢ v) w.rt. S 1



Poly-SFW: Privacy Analysis

Lemma: Sensitivity Bound

For the Poly-SFW algorithm, let (global sensitivity)

o . /!
1 | JB B (0 V() = Vu(S

Then
s¢ < max { 220L(1 — )t 2n(L1D? 4+ LoyD)}



Poly-SFW: Privacy Analysis

Lemma: Sensitivity Bound

For the Poly-SFW algorithm, let (global sensitivity)

o . !
8y o= Uerg(&gcx) max (v, Vi(S) — Vi(S"))|

Then
s¢ < max {%(1 —n)t,2n(L,D? + LOD)}

Corollary

The Poly-SFW algorithm is (¢, 6)-DP



Poly-SFW: Privacy Analysis

Lemma: Sensitivity Bound

For the Poly-SFW algorithm, let (global sensitivity)

o . !
8y o= Uerg(&gcx) max (v, Vi(S) — Vi(S"))|

Then
s¢ < max {%(1 —n)t,2n(L,D? + LOD)}

Corollary

The Poly-SFW algorithm is (¢, 6)-DP

Proof idea.

« By Lemma, any given step ¢ is (¢/1/nIn(1/4),0)-DP
(Report Noisy Max)
+ Advanced composition of DP gives (e, )-DP O



Poly-SFW: Convergence Analysis

Lemma: Variance-Reduced Gradient Estimate

For Poly-SFW, the recursive gradient estimator V* satisfies

Ind
E 451 ||Vi=VFp(a')lco < 4Lo4/ %(1—n)t+4m/2t In(d)(Ly D+Lo)

Proof idea. Use that /., is (21nd)-regular and solve recursive
estimator (2nd moment) bounds [Juditsky & Nemirovski:2009]



Poly-SFW: Convergence Analysis

Lemma: Variance-Reduced Gradient Estimate

For Poly-SFW, the recursive gradient estimator V* satisfies

Ind
E 451 ||Vi=VFp(a')lco < 4Lo4/ %(1—n)t+4m/2t In(d)(Ly D+Lo)

Proof idea. Use that /., is (21nd)-regular and solve recursive
estimator (2nd moment) bounds [Juditsky & Nemirovski:2009]

(R% | - floo) —> (R, || - [l4), with ¢ = Ind. These norms are equivalent,
and || - || is (Ind)-smooth

Iz +yllg < llzllg + (VI - lIg) (@), ) + nd)llylig



Poly-SFW: Convergence Analysis

Lemma: Variance-Reduced Gradient Estimate

For Poly-SFW, the recursive gradient estimator V* satisfies

Ind
E 451 ||Vi=VFp(a')lco < 4Lo4/ %(1—n)t+4m/2t In(d)(Ly D+Lo)

Theorem [Bassily, G. & Nandi:'21]

Poly-SFW algorithm attains excess risk

EA,SNDH[FDM(s»_Fg]:o(wa+LOD)ln<d>ln<fj>ﬁ lnu/a))

Note: Both gradient estimator error and accuracy can be bounded with high
probability, by leveraging regularity



¢,-Setup: Further Improvements

+ Our bound is nearly-optimal, as long as ¢ = O(1)
« What about ¢ = 0(1)?



¢,-Setup: Further Improvements

[Asi, Feldman, Koren & Talwar:'21]

« Provide a (¢, d)-DP algorithm with improved excess risk

logd log(d) log?(n) log(1/8)72/3
O((L0D+L1D2) og 10gn+L1D2 og(d)log=(n) log( ,()} )

n EN

SCO DP-ERM [TTZ:"15]

« Similar to Poly-SFW, combined with tree-aggregation for prefix
sums + priv. amplification by shuffling




(,Setup: 1 <p <2




Lower Bounds for ¢, Setup: 1 < p < 2

Theorem [Bassily, G. & Nandi:'21]

Consider /,-setup, 1 <p < 2. If A: Z" — X is (¢,0)-DP, then

DP-SCO excess risk Q(\/Lﬁ +(p— 1);/_3)
ERM error is Q((p — 1)@)

En



Lower Bounds for /, Setup: 1 < p < 2

Theorem [Bassily, G. & Nandi:'21]
Consider /,-setup, 1 <p < 2. If A: Z" — X is (¢,0)-DP, then

DP-SCO excess risk Q(\/Lﬁ +(p— 1);/_3)
ERM error is Q((p — 1)@)

En

Remarks:

« Sudden transition in the
excess risk when o

« LBistight,upto (p — 1)
factor [AFKT:'21; BGN:"21]

- Proof uses strong convexity
of ¢, [Ball, Carlen & Lieb:'94]




Upper Bounds for /, -setups: Generalized Gaussian Mechanism

+ Recall the (isotropic) Gaussian density

9(z) = Cexp{~|lz — pl3/[20°]}

19



Upper Bounds for /,-setups: Generalized Gaussian Mechanism

+ Recall the (isotropic) Gaussian density

9(z) = Cexp{~|lz — pl3/[20°]}
* Let (E, | - ||.) be xk-regular w/smooth norm || - ||., and an
algorithm A : Z" — E with || - ||..-sensitivity

A = sup |lA(S) — A(S) ]«
S~S/

+ Generalized Gaussian (GG) Mechanism:
Agg(S) w/density g(z) = Cexp{—||lz — A(S)|%/[20°]}

19



Upper Bounds for /,-setups: Generalized Gaussian Mechanism

+ Generalized Gaussian (GG) Mechanism:
Agg(S) w/density g(z) = Cexp{—||lz — A(S)|%/[20°]}

Proposition [Bassily, G. & Nandi:'21]
If 02 = 2k log(1/8)A? /2, the GG mechanism is (e, §)-DP
E[|.A(S) — Agg(S)IZ] < do®

Consequence: GG mechanism allows use of Noisy stochastic
first-order algorithms for spaces whose dual is x-regular

19



GG Mechanism: Analysis

* RényiDP: Let P = A(S) and Q = A(S")
exp{(a — 1) Do (P||Q)}
- Chu(8)"a0

= C fuexp{ = gllz = mll3 + 5511z — pall3

= C’fRd exp{ — 57 ||e — pn + /12||3_ 1L %Hz”i}dz

20



GG Mechanism: Analysis

* RényiDP: Let P = A(S) and Q = A(S")
exp{(a — 1) Do (P||Q)}
- chu(#)
a—1

= C fraexp { = 2l — pll3 + S5z — pal} }dz

= C’fRd exp ﬁ”z—ul+/¢2||3_+%T}1Hz||3_}dz.
Let = p1 — po @and p(-) = || - ||2.. Use convexity and smoothness
of |- 1%
—allz—pul} < —allzl} +(Vp(2), o)

IN

—afl2llf + 213 = Iz — aulli + s+ llowl?]

20



GG Mechanism: Analysis

* RényiDP: Let P = A(S) and Q = A(S")
exp{(a — 1) Do (P||Q)}
- Chu(8)"a0

= C e { gl = ml + 55z — el iz

= C [pa€xD| — 325z — p1 + pall3 + S Hz||2 }dz
Let = p1 — po @and p(-) = || - ||2.. Use convexity and smoothness
of |- 1%
—allz—pul} < —allzl} +(Vp(2), o)

IN

—afl2llf + 213 = Iz — aulli + s+ llowl?]

* Plugging the bound,
exp{(a —1)Da(P||Q)} < 2;;{5 yllen = p2ll < m”ﬂl p2|?0

20



Upper Bounds: Noisy Variance-Reduced Stochastic Frank-Wolfe

« Follows a similar strategy to the polyhedral case, but:
« Add GG noise to the gradient estimator
« Solve the linear optimization subroutine exactly

figure from [Berthet et al:20]

21



Upper Bounds: Noisy Variance-Reduced Stochastic Frank-Wolfe

« Follows a similar strategy to the polyhedral case, but:
« Add GG noise to the gradient estimator
« Solve the linear optimization subroutine exactly

figure from [Berthet et al:20]

- Naive version of this algorithm is suboptimal O(ﬁ + 8’:;(/4)

* In combination with tree aggregation we get optimal rates in a
single pass, O (/% + 5Y2)

* No privacy ampllﬁcatlon needed

« Algorithm is general: works for any space whose dual is

r-regular

21



Upper Bounds: Noisy Variance-Reduced Stochastic Frank-Wolfe

+ Follows a similar strategy to the polyhedral case, but:
« Add GG noise to the gradient estimator

- Solve the linear optimization subroutine exactly

« Naive version of this algorithm is suboptimal O(\f + ;{/4)

+ In combination with tree aggregation we get optimal rates in a

single pass, O (/% + 5Y)
+ No privacy amplification needed

« Algorithm is general: works for any space whose dual is
r-regular

Note: AFKT:"21 obtained same rates for 1 < p < 2 nonsmooth case,
but their oracle complexity is superlinear in n

21



Nonconvex Losses




DP Stochastic Nonconvex Optimization

« Vanishing excess risk is provably hard
- Stationarity measures:
+ Unconstrained smooth: E 4 s ||V Fp(A(S))|-
[Wang, Chen & Xu:"19; Wang, Xu:'19; Song, Steinke, Thakkar & Thakurta:'21; Zhou, Chen, Hong & Wu:'20]
« Constrained smooth: E 4 s sup, .+ (VFp(A(S)), A(S) — z)
+ Weakly convex (nonsmooth): close to a near-stationary point

f

0.5
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DP Stochastic Nonconvex Optimization

« Vanishing excess risk is provably hard
- Stationarity measures:
+ Unconstrained smooth: E 4 s ||V Fp(A(S))|-
[Wang, Chen & Xu:"19; Wang, Xu:'19; Song, Steinke, Thakkar & Thakurta:'21; Zhou, Chen, Hong & Wu:'20]
« Constrained smooth: E 4 s sup, .+ (VFp(A(S)), A(S) — z)
+ Weakly convex (nonsmooth): close to a near-stationary point

Setting ¢, Setup Rate Linear Time?
Smooth o log?/3 d
Constrained p=1 (ne)173 v
2/5
1<p<2| s+ () v
Weakly Convex 1 2\ 1/3
(Nonsmooth) 1<p<2| gm+ (ne) No

[Bassily, G. & Menart:'21]

22



DP Stochastic Nonconvex Optimization

Setting ¢, Setup Rate Linear Time?
Smooth o log?/% d
Constrained p=1 (ne)1/3 v
2/5
1<p<?2 n}/3+(£) v
Weakly Convex 1<p<2 L (vd 1/3 No
(Nonsmooth) =P i/ ne

[Bassily, G. & Menart:'21]

Open Problem: Lower bounds for stationarity?

22



DP Stochastic Weakly Convex Optimization

+ Key Observation: Weakly convex functions can be convexified
by strongly convex regularization

23



DP Stochastic Weakly Convex Optimization

+ Key Observation: Weakly convex functions can be convexified
by strongly convex regularization
« Algorithm based on a sequence of stochastic proximal steps

proxl/ﬁ(x = argmln{FD( )+ gHﬂc - a:t||2}

+ Each subproblem solved with optimal risk by phased noisy
stochastic mirror-descent, with disjoint data batches  [AFKT:21]

23



DP Stochastic Weakly Convex Optimization

Key Observation: Weakly convex functions can be convexified
by strongly convex regularization
Algorithm based on a sequence of stochastic proximal steps

proxl/ﬁ(x = argmln{FD( )+ ng - a:t||2}

Each subproblem solved with optimal risk by phased noisy
stochastic mirror-descent, with disjoint data batches  [AFKT:21]
Guarantee: Randomly chosen iterate # satisfies close to near
stationarity in expectation, for ¥ = O( L+ (L )1/3),

JreX: ||z—z| <9, inf  sup(g,z—y) <9
gEOFD () yex

O(n~'/%) is best rate known nonprivately
[Davis, Grimmer:'19; Davis, DrusvyatsRiy:'19]

Oracle complexity is O(min{n3/2, n2e/+/d})

23



Summary




Conclusions

+ Provide new algorithms for DP-SCO in Z,-setups
+ Novel and sharp lower bounds for DP-SCO in /,,-setups
+ Introduce new DP mechanism for regular normed spaces

+ Extensions to stationary points for nonconvex settings

24



Conclusions

+ Provide new algorithms for DP-SCO in Z,-setups
+ Novel and sharp lower bounds for DP-SCO in /,,-setups
+ Introduce new DP mechanism for regular normed spaces

+ Extensions to stationary points for nonconvex settings
Future Directions

« What other sets, aside from polytopes, can avoid the
Q(v/d/[en]) lower bound for DP-SCO?

« Universally optimal algorithm for DP-SCO for general norms?
« Oracle complexity for nonsmooth DP-SCO
« Lower bounds for nonconvex DP-SO

24



Thank you!
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