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Privacy in Data Analysis



Massive datasets are a key element of
current technological revolution

Datasets often contain sensitive user data

Q: How to learn from data without infringing users’ privacy?
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Privacy Attacks: The Netflix Case

• Netflix Prize competition, US$1,000,000 (2006-09)
• Goal: based on historical user scores, provide movie
recommendations for users

• Data: 100, 480, 507 ratings by ∼ 500, 000 users on ∼ 18, 000

movies
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Privacy Attacks: The Netflix Case (cont’d)

• Anonymized data, in full accordance with the law
• Narayanan and Shmatikov, 2008 showed how cross references with
(public) IMDB exposed the identity of Netflix users
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Privacy Attacks: The Netflix Case (cont’d)

• Anonymized data, in full accordance with the law
• Narayanan and Shmatikov, 2008 showed how cross references with
(public) IMDB exposed the identity of Netflix users
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Privacy in ML Models

• Perhaps releasing a private dataset is difficult
• But what about models?

• Even more modest ML models (SVM, linear regression, etc.) can
suffer from privacy risks

5



Privacy in ML Models

• Perhaps releasing a private dataset is difficult
• But what about models?
• Even more modest ML models (SVM, linear regression, etc.) can
suffer from privacy risks

5



Differential Privacy



Differential Privacy (DP)

Definition [Differential Privacy (DP)]
Two datasets S = (z1, . . . , zn) and S′ = (z′1, . . . , z

′
n) in Zn are

neighbors (denoted S ' S′) iff

There exists at most one i ∈ [n] s.t. zi 6= z′i

Randomized algorithm A : Zn 7→ X is (ε, δ)-differentially private if

P(A(S) ∈ E) ≤ eε · P(A(S′) ∈ E) + δ (∀S ' S′)(∀E ⊆ X )
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The Gaussian Mechanism

Start with a deterministic algorithm A : Zn 7→ Rd

e.g., empirical mean A(S) = 1
n

∑n
i=1 zi

Gaussian Mechanism
• Hypothesis: ℓ2-sensitivity
‖A(S)−A(S′)‖2 ≤ ∆2

• Mechanism:
AGauss(S) ∼ N (A(S), σ2)

• Guarantee: (ε, δ)-DP
(for σ2 = O(∆2

2 ln(1/δ)/ε
2))

Note: Error of GM, E‖A(S)−AGauss(S)‖2 = Θ(
√
dσ)

7



The Gaussian Mechanism

Start with a deterministic algorithm A : Zn 7→ Rd

e.g., empirical mean A(S) = 1
n

∑n
i=1 zi

Gaussian Mechanism
• Hypothesis: ℓ2-sensitivity
‖A(S)−A(S′)‖2 ≤ ∆2

• Mechanism:
AGauss(S) ∼ N (A(S), σ2)

• Guarantee: (ε, δ)-DP
(for σ2 = O(∆2

2 ln(1/δ)/ε
2))

Note: Error of GM, E‖A(S)−AGauss(S)‖2 = Θ(
√
dσ)

7



Differentially Private Selection

Goal: Select the largest element from an array

Report Noisy Max Mechanism
• Hypothesis: ℓ∞-sensitivity
‖A(S)−A(S′)‖∞ ≤ ∆∞

• Guarantee: (ε, 0)-DP

• Mechanism: ARNM(S) = argmaxj∈[d]

{
Aj(S) + Lap(0,∆∞/ε)

}
• Accuracy: w.h.p. |ARNM(S)−maxj∈[d]A(S)| = O

(
∆∞ ln d

ε

)
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Composition in Differential Privacy

• Let A1(S),A2(S, a1), . . . ,Ak(S, ak−1) mechanisms that are
(ε, δ)-DP w.r.t. their first input

• Define inductively, B1 = A1, and

Bj(S) = Aj(S,Bj−1(S)) (∀j = 2, . . . , k)

S

As &z As • • • tie

Theorem (Basic Composition)
(B1, . . . ,Bk) is (kε, kδ)-DP

Theorem (Advanced Composition) [Dwork, Rothblum& Vadhan:’10]
If k < 1/ε2. Then for any 0 < δ′ ≤ 1, (B1, . . . ,Bk) is(

O(ε
√
k ln(1/δ′)), kδ + δ′

)
-DP
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Composition in Differential Privacy

0 40 80 120 160 200 240 280 320 360 400 440 480 520

0.05

0.1

0.15

Figure 1: Bounds on the privacy parameter obtained for the composition of : mechanisms, each of which is
(Y, 0)-DP for Y = 0.01. The horizontal axis represents the number : of mechanisms. The blue (straight) curve
shows the bound :Y given by basic composition, while the red curve shows the value Ỹ given by Theorem 1.1 with
X 0 = 10�6.

then strong composition implies that the whole algorithm is (Y, X)-DP for Y = ⇥(Y 0
p
: ln(1/X). Setting

Y 0 = Yp
: ln(1/X)

, we see that the Laplace mechanism satis�es (Y, X)di�erential privacy with a smaller

amount of noise—the same ⇥(
p
3 ln(1/X)/Y) bound we get from the Gaussian mechanism!

Quantitatively Tighter Bounds The bound in Theorem 1.1 provides clear asymptotics, but is not
always tight. First, we’ll see from the proof that the dominant term in the bound on Ỹ is actually a generic
bound on the tails of the binomial distribution; plugging in exact bounds can improve the constant
terms.

There are also nowmany results that yield tighter bounds for the composition of speci�c mechanisms
or classes of mechanisms. These have proven crucial for understanding algorithms with many stages of
a particular form, such as stochastic gradient descent (discussed next lecture). For now, though, we will
try to see how to prove the simple, general bound of Theorem 1.1.

2 Privacy Loss as a Random Variable
Given a randomized algorithm � and two possible inputs x and x0, de�ne the privacy loss on output ~
to be the “log-odds ratio”, that is, the log of the ratio of the likelihoods of ~ under x and x0:

�x,x0 (~) def= ln
✓
P (�(x) = ~)
P (�(x0) = ~)

◆
. (2)

Last lecture, we showed (Lemma 1.4) that if, for every pair of neighboring data sets x, x0,

P
. �(x)

�
�x,x0 (. ) > Y

�
 X ,

then the mechanism � is (Y, X)-DP.
Now when � consists of the adaptive composition of : mechanisms, we can write the output as a

sequence ~ = (~1,~2, ...,~: ). We do not want to assume anything about the way that the 9-th algorithm
� 9 is chosen based on ~1,~2, ...,~ 9�1. Somewhat surprisingly, we don’t have to! We can break up the
probability of seeing the sequence ~ as a product

P (�(x) = ~1, ...,~: ) = P (�1(x) = ~1) ⇥ P (�2(x,~1) = ~2) ⇥ · · · ⇥ P (�: (x,~1, ...,~:�1) = ~: ) ,

.... which allows us to write the privacy loss as a sum:

2

source: J. Ullman lecture notes
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Stochastic Convex Optimization



Stochastic Convex Optimization (SCO)

(SCO) min
x∈X
{FD(x) := Ez∼D[f(x, z)]} = F ∗

D

• (Rd, ‖ · ‖): d-dimensional normed space
• X ⊆ B∥·∥(0, D), compact and convex
• Z any set
• D probability distribution supported on Z

• Convex loss f(·, z)
• L0-Lipschitz: |f(x, z)− f(y, z)| ≤ L0‖x− y‖
• L1-Lipschitz gradient: ‖∇f(x, z)−∇f(y, z)‖∗ ≤ L1‖x− y‖

Excess Risk: Given data S = (z1, . . . , zn)
i.i.d.∼ Dn

Does there exist an algorithm A :
⋃

nZn 7→ X s.t.

EAES∼Dn

[
FD(A(S))− F ∗

D

]
︸ ︷︷ ︸

excess (population) risk

n→∞−→ 0
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Stochastic Convex Optimization (SCO): Excess Risk Rates

• ℓp-setup: ‖ · ‖ = ‖ · ‖p, 1 ≤ p ≤ ∞

p = 1 p ∈ (1, 2] p ∈ (2,∞) p =∞

Θ

(√
ln d

n

)
Θ

(
1√
n

)
Θ

(
min

{
1

n1/p
,
d

1
2−

1
p

√
n

})
Θ

(√
d

n

)

[Nemirovsky & Yudin:1983]

• Upper bounds are achieved by Stochastic Mirror Descent (SMD)
• Algorithms run with a single pass over the data: O(n) time
• Not only in expectation, but w/high probability (regular norms)
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Differentially Private Stochastic
Convex Optimization (DP-SCO)



Differentially-Private Stochastic Convex Optimization (DP-SCO)

DP-SCO: Given data S = (z1, . . . , zn)
i.i.d.∼ Dn

Does there exist an (ε, δ)-DP algorithm A :
⋃

nZn 7→ X s.t.

EAES∼Dn

[
FD(A(S))− F ∗

D

]
︸ ︷︷ ︸

excess (population) risk

n→∞−→ 0

p Upper Bound Lower bound
1 Õ

(√
log d
n +

(
log d
εn

)2/3)
Ω
(√

log d
n +

(
1
εn

)2/3)
(1, 2] Õ

(√
κ
n + κ

√
d

εn

)
Ω
(

1√
n
+

√
d

κεn

)
(2,∞) Õ

(
d1/2−1/p

√
n

+ d1−1/p

εn

)
Ω
(
min

{
d1/2−1/p

√
n

, 1
(εn)1/p

, d1−1/p

nε

})
∞ Õ

(√
d
n + d

εn

)
Ω
(√

d
n + d

εn

)
Notes: [BFTT:’19, AFKT:’21, BGN:’21, ABGMU:’22]
• ℓ1-setup also requires smoothness
• κ = 1/(p− 1): strong convexity of ℓp, 1 < p ≤ 2

• Upper bounds also hold w/high probability
• For smooth case, algorithms are single pass and projection free
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DP-SCO: ℓ1-setup



Avoiding the Curse of Dimensionality in DP-SCO

Is the polynomial dimension-dependence in DP-SCO risk avoidable?

Optimal excess risk ℓ2-setup [Bassily, Feldman, Talwar & Thakurta:’19]

Θ
(
L0D

( 1√
n︸︷︷︸

SCO

+

√
d ln(1/δ)

nε︸ ︷︷ ︸
DP-ERM [BST:’14]

))

• Need not to release high-dimensional vectors [Steinke & Ullman:’15]

• There exists one optimization algorithm with implicit updates:

vt+1 = argmin{〈∇f(xt), v〉 : v ∈ ext(X )}

Conditional gradient (a.k.a. Frank-Wolfe) algorithm
• Can be made private by adding Laplace noise on each
〈∇f(xt), v〉, and minimizing the noisy evaluations

• (Full-batch) Private FW on ERM achieves nearly-optimal error
[Talwar, Thakurta & Zhang:’14-’15]

• Conversion to SCO excess risk guarantees always suboptimal
• Stochastic FW has suboptimal rates, even nonprivately!

[Hazan & Luo:’16]
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Polyhedral Stochastic Frank-Wolfe w/Variance Reduction

Non-privately proposed in [Hassani, Karbasi, Mokhtari & Shen:’19; Zhang, Shen, Mokhtari, Hassani & Karbasi:’20]

g ← minibatch gradient ≈ ∇FD(x
t)

∆← grad variation ≈ ∇FD(x
t)−∇FD(x

t−1)

VarianceReducedGradient(∆, g,∇t−1)
∇t = (1 − η)

(
∇t−1 +∆

)
+ ηg

FrankWolfeUpdate(∇, xt)
v = argmin

v∈ext(X )

[
〈∇, v〉

]
xt+1 ←− (1 − η)xt + ηv

14



Polyhedral Stochastic Frank-Wolfe w/Variance Reduction

Poly-SFW [Bassily, G. & Nandi:’21]
Starting batch size: n/2 (→ sensitivity control)
Batch size 1 for updates (→ n/2 iterations)

g ← minibatch gradient ≈ ∇FD(x
t)

∆← grad variation ≈ ∇FD(x
t)−∇FD(x

t−1)

VarianceReducedGradient(∆, g,∇t−1)
∇t = (1 − η)

(
∇t−1 +∆

)
+ ηg

PrivateFrankWolfeUpdate(∇, xt)
v = argmin

v∈ext(X )

[
〈∇, v〉+Lap

(
2st
ε

√
n log(1/δ)

)]
xt+1 ←− (1 − η)xt + ηv

Note: st is the sensitivity of 〈∇t, v〉 w.r.t. S 14



Poly-SFW: Privacy Analysis

Lemma: Sensitivity Bound
For the Poly-SFW algorithm, let (global sensitivity)

st := max
v∈ext(X )

max
S≃S′

|〈v,∇t(S)−∇t(S
′)〉|

Then
st ≤ max

{
2L0D

n (1− η)t, 2η(L1D
2 + L0D)

}

Corollary
The Poly-SFW algorithm is (ε, δ)-DP

Proof idea.

• By Lemma, any given step t is (ε/
√
n ln(1/δ), 0)-DP

(Report Noisy Max)
• Advanced composition of DP gives (ε, δ)-DP □

15
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Poly-SFW: Convergence Analysis
Lemma: Variance-Reduced Gradient Estimate
For Poly-SFW, the recursive gradient estimator ∇t satisfies

EA,S∼Dn‖∇t−∇FD(x
t)‖∞≤ 4L0

√
ln d

n
(1−η)t+4η

√
2t ln(d)(L1D+L0)

Proof idea. Use that ℓ∞ is (2 ln d)-regular and solve recursive
estimator (2nd moment) bounds [Juditsky & Nemirovski:2009]

Theorem [Bassily, G. & Nandi:’21]
Poly-SFW algorithm attains excess risk

EA,S∼Dn [FD(A(S))−F ∗
D]=O

(
(L1D

2 + L0D)
ln(d) ln

(
n

ln d

)√
ln(1/δ)

ε
√
n

)

Note: Both gradient estimator error and accuracy can be bounded with high
probability, by leveraging regularity
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EA,S∼Dn‖∇t−∇FD(x
t)‖∞≤ 4L0

√
ln d

n
(1−η)t+4η

√
2t ln(d)(L1D+L0)

Proof idea. Use that ℓ∞ is (2 ln d)-regular and solve recursive
estimator (2nd moment) bounds [Juditsky & Nemirovski:2009]

(Rd, ‖ · ‖∞) −→ (Rd, ‖ · ‖q), with q = ln d. These norms are equivalent,
and ‖ · ‖q is (ln d)-smooth

‖x+ y‖2q ≤ ‖x‖2q + 〈∇(‖ · ‖2q)(x), y〉+ (ln d)‖y‖2q

Theorem [Bassily, G. & Nandi:’21]
Poly-SFW algorithm attains excess risk

EA,S∼Dn [FD(A(S))− F ∗
D]=O

(
(L1D

2 + L0D)
ln(d) ln

(
n

ln d

)√
ln(1/δ)

ε
√
n

)
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ℓ1-Setup: Further Improvements

• Our bound is nearly-optimal, as long as ε = Θ(1)

• What about ε = o(1)?

[Asi, Feldman, Koren & Talwar:’21]

• Provide a (ε, δ)-DP algorithm with improved excess risk

O
(
(L0D + L1D

2)

√
log d

n︸ ︷︷ ︸
SCO

log n+L1D
2
[ log(d) log2(n) log(1/δ)

εn

]2/3
︸ ︷︷ ︸

DP-ERM [TTZ:’15]

)

• Similar to Poly-SFW, combined with tree-aggregation for prefix
sums + priv. amplification by shuffling

17



ℓ1-Setup: Further Improvements

• Our bound is nearly-optimal, as long as ε = Θ(1)

• What about ε = o(1)?

[Asi, Feldman, Koren & Talwar:’21]

• Provide a (ε, δ)-DP algorithm with improved excess risk

O
(
(L0D + L1D

2)

√
log d

n︸ ︷︷ ︸
SCO

log n+L1D
2
[ log(d) log2(n) log(1/δ)

εn

]2/3
︸ ︷︷ ︸

DP-ERM [TTZ:’15]

)

• Similar to Poly-SFW, combined with tree-aggregation for prefix
sums + priv. amplification by shuffling

17



ℓp Setup: 1 < p < 2



Lower Bounds for ℓp Setup: 1 < p < 2

Theorem [Bassily, G. & Nandi:’21]
Consider ℓp-setup, 1 < p ≤ 2. If A : Zn 7→ X is (ε, δ)-DP, then

• DP-SCO excess risk Ω̃
(

1√
n
+ (p− 1)

√
d

εn

)
• ERM error is Ω

(
(p− 1)

√
d ln(1/δ)

εn

)

Remarks:
• Sudden transition in the
excess risk when p = 1 + Ω(1)

• LB is tight, up to (p− 1)

factor [AFKT:’21; BGN:’21]

• Proof uses strong convexity
of ℓp [Ball, Carlen & Lieb:’94]
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Upper Bounds for ℓp-setups: Generalized Gaussian Mechanism

• Recall the (isotropic) Gaussian density

g(z) = C exp{−‖z − µ‖22/[2σ2]}

• Let (E, ‖ · ‖∗) be κ-regular w/smooth norm ‖ · ‖+, and an
algorithm A : Zn 7→ E with ‖ · ‖∗-sensitivity

∆ = sup
S≃S′

‖A(S)−A(S′)‖∗

• Generalized Gaussian (GG) Mechanism:
AGG(S) w/density g(z) = C exp{−‖z −A(S)‖2+/[2σ2]}

Proposition [Bassily, G. & Nandi:’21]
• If σ2 = 2κ log(1/δ)∆2/ε2, the GG mechanism is (ε, δ)-DP
• E[‖A(S)−AGG(S)‖2∗] ≤ dσ2

Consequence: GG mechanism allows use of Noisy stochastic
first-order algorithms for spaces whose dual is κ-regular
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GG Mechanism: Analysis

• Rényi DP: Let P = A(S) and Q = A(S′)

exp{(α− 1)Dα(P||Q)}

= C
∫
Rd

(
dP
dQ

)α
dQ

= C
∫
Rd exp

{
− α

2σ2 ‖z − µ1‖2+ + α−1
2σ2 ‖z − µ2‖2+

}
dz

= C
∫
Rd exp

{
− α

2σ2 ‖z − µ1 + µ2‖2+ + α−1
2σ2 ‖z‖2+

}
dz.

Let µ = µ1 − µ2 and p(·) = ‖ · ‖2+. Use convexity and smoothness
of ‖ · ‖2+
−α‖z − µ‖2+ ≤ −α‖z‖2+ + 〈∇p(z), αµ〉

≤ −α‖z‖2+ + [‖z‖2+ − ‖z − αµ‖2+ + κ+‖αµ‖2+]

• Plugging the bound,
exp{(α− 1)Dα(P||Q)} ≤ κ+α2

2σ2(α−1)
‖µ1 − µ2‖2+ ≤ κα2

2σ2(α−1)
‖µ1 − µ2‖2□
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Upper Bounds: Noisy Variance-Reduced Stochastic Frank-Wolfe

• Follows a similar strategy to the polyhedral case, but:
• Add GG noise to the gradient estimator
• Solve the linear optimization subroutine exactly

- We propose a doubly stochastic scheme for their minimization in learning tasks, and we
demonstrate our method on structured prediction tasks, in particular ranking (permutation prediction),
for which conditional random fields and the Gibbs distribution are intractable.

2 Perturbed maximizers

CC

y�(✓)y�(✓)

y�(✓ + "Z)y�(✓ + "Z)

✓ + "Z✓ + "Z

✓✓

y�
" (✓)y�
" (✓)

Figure 1: Stochastic smoothing yields a per-
turbed optimizer y˚

" in expectation.

Given a finite set of distinct points Y Ä Rd and C
its convex hull, we consider a general discrete
optimization problem parameterized by an input
✓ P Rd as follows:

F p✓q “ max
yPC

xy, ✓y , y˚p✓q “ arg max
yPC

xy, ✓y . (1)

As we discuss below, this formulation encompasses
a variety of discrete operations commonly used
in machine learning. In all cases, C is a convex
polytope and these problems are linear programs
(LP). For almost every ✓, the argmax is unique,
and y˚p✓q “ r✓F p✓q. While widespread, these
functions do not have the convenient properties of
blocks in end-to-end learning architectures, such as smoothness or differentiability. In particular,
✓ fiÑ y˚p✓q is piecewise constant: its gradient is zero almost everywhere, and undefined otherwise. To
address these issues, we simply add to ✓ a random noise vector "Z, where " ° 0 is a temperature
parameter and Z has a positive and differentiable density dµpzq9 expp´⌫pzqqdz on Rd, so that
y˚p✓ ` "Zq is almost surely (a.s.) uniquely defined. This induces a probability distribution p✓ for
Y P Y given by p✓pyq “ P py˚p✓ ` "Zq “ yq; see Figure 1.

This creates a general and natural model on the variable Y , when observations are solutions of
optimization problems, with uncertain costs. It enables the modeling of phenomena where agents
chose an optimal y P C based on uncertain knowledge of ✓. We view this as a generalization, or
alternative to the Gibbs distribution, rather than an approximation thereof.

Taking expectations with respect to the random perturbation leads to smoothed versions of F
and y˚:

Definition 2.1. For all ✓ P Rd, and " ° 0, we define the perturbed maximum as

F"p✓q “ ErF p✓ ` "Zqs “ ErmaxyPC xy, ✓ ` "Zys,

and, the perturbed maximizer as

y˚
" p✓q “ Ep✓pyqrY s “ Erarg max

yPC
xy, ✓ ` "Zys “ Err✓ max

yPC
xy, ✓ ` "Zys “ r✓F"p✓q .

Models of random optimizers for linear problems with perturbed inputs are the subject of a wide
litterature in machine learning, under the name of “perturb-and-MAP” Papandreou and Yuille (2011);
Hazan and Jaakkola (2012), and perturbed leader method in online learning (Hannan, 1957; Kalai
and Vempala, 2003; Abernethy et al., 2014). We refer to it here as the perturbed model.

Broad applicability. Many operations used in machine learning can be written in the form of
Eq. (1) and are thus part of our framework. Indeed, for any score function s : Y Ñ R, the problem
maxyPY spyq, can at least be written as a linear program (LP) in Eq. (1), for some embedding of the
set Y . We emphasize that the LP structure need not be known to use the perturbed maximizers. In
our experiments, we focus on the following three tasks (see Appendix B for more examples).

3

figure from [Berthet et al:’20]

• Naive version of this algorithm is suboptimal O
(

κ√
n
+ κ

√
d

εn3/4

)
• In combination with tree aggregation we get optimal rates in a
single pass, O

(√
κ
n + κ

√
d

εn

)
• No privacy amplification needed
• Algorithm is general: works for any space whose dual is
κ-regular

Note: AFKT:’21 obtained same rates for 1 < p ≤ 2 nonsmooth case,
but their oracle complexity is superlinear in n

21



Upper Bounds: Noisy Variance-Reduced Stochastic Frank-Wolfe

• Follows a similar strategy to the polyhedral case, but:
• Add GG noise to the gradient estimator
• Solve the linear optimization subroutine exactly

- We propose a doubly stochastic scheme for their minimization in learning tasks, and we
demonstrate our method on structured prediction tasks, in particular ranking (permutation prediction),
for which conditional random fields and the Gibbs distribution are intractable.

2 Perturbed maximizers

CC

y�(✓)y�(✓)

y�(✓ + "Z)y�(✓ + "Z)

✓ + "Z✓ + "Z

✓✓

y�
" (✓)y�
" (✓)

Figure 1: Stochastic smoothing yields a per-
turbed optimizer y˚

" in expectation.

Given a finite set of distinct points Y Ä Rd and C
its convex hull, we consider a general discrete
optimization problem parameterized by an input
✓ P Rd as follows:

F p✓q “ max
yPC

xy, ✓y , y˚p✓q “ arg max
yPC

xy, ✓y . (1)

As we discuss below, this formulation encompasses
a variety of discrete operations commonly used
in machine learning. In all cases, C is a convex
polytope and these problems are linear programs
(LP). For almost every ✓, the argmax is unique,
and y˚p✓q “ r✓F p✓q. While widespread, these
functions do not have the convenient properties of
blocks in end-to-end learning architectures, such as smoothness or differentiability. In particular,
✓ fiÑ y˚p✓q is piecewise constant: its gradient is zero almost everywhere, and undefined otherwise. To
address these issues, we simply add to ✓ a random noise vector "Z, where " ° 0 is a temperature
parameter and Z has a positive and differentiable density dµpzq9 expp´⌫pzqqdz on Rd, so that
y˚p✓ ` "Zq is almost surely (a.s.) uniquely defined. This induces a probability distribution p✓ for
Y P Y given by p✓pyq “ P py˚p✓ ` "Zq “ yq; see Figure 1.

This creates a general and natural model on the variable Y , when observations are solutions of
optimization problems, with uncertain costs. It enables the modeling of phenomena where agents
chose an optimal y P C based on uncertain knowledge of ✓. We view this as a generalization, or
alternative to the Gibbs distribution, rather than an approximation thereof.

Taking expectations with respect to the random perturbation leads to smoothed versions of F
and y˚:

Definition 2.1. For all ✓ P Rd, and " ° 0, we define the perturbed maximum as

F"p✓q “ ErF p✓ ` "Zqs “ ErmaxyPC xy, ✓ ` "Zys,

and, the perturbed maximizer as

y˚
" p✓q “ Ep✓pyqrY s “ Erarg max

yPC
xy, ✓ ` "Zys “ Err✓ max

yPC
xy, ✓ ` "Zys “ r✓F"p✓q .

Models of random optimizers for linear problems with perturbed inputs are the subject of a wide
litterature in machine learning, under the name of “perturb-and-MAP” Papandreou and Yuille (2011);
Hazan and Jaakkola (2012), and perturbed leader method in online learning (Hannan, 1957; Kalai
and Vempala, 2003; Abernethy et al., 2014). We refer to it here as the perturbed model.

Broad applicability. Many operations used in machine learning can be written in the form of
Eq. (1) and are thus part of our framework. Indeed, for any score function s : Y Ñ R, the problem
maxyPY spyq, can at least be written as a linear program (LP) in Eq. (1), for some embedding of the
set Y . We emphasize that the LP structure need not be known to use the perturbed maximizers. In
our experiments, we focus on the following three tasks (see Appendix B for more examples).

3

figure from [Berthet et al:’20]

• Naive version of this algorithm is suboptimal O
(

κ√
n
+ κ

√
d

εn3/4

)
• In combination with tree aggregation we get optimal rates in a
single pass, O

(√
κ
n + κ

√
d

εn

)
• No privacy amplification needed
• Algorithm is general: works for any space whose dual is
κ-regular

Note: AFKT:’21 obtained same rates for 1 < p ≤ 2 nonsmooth case,
but their oracle complexity is superlinear in n

21



Upper Bounds: Noisy Variance-Reduced Stochastic Frank-Wolfe

• Follows a similar strategy to the polyhedral case, but:
• Add GG noise to the gradient estimator
• Solve the linear optimization subroutine exactly

• Naive version of this algorithm is suboptimal O
(

κ√
n
+ κ

√
d

εn3/4

)
• In combination with tree aggregation we get optimal rates in a
single pass, O

(√
κ
n + κ

√
d

εn

)
• No privacy amplification needed
• Algorithm is general: works for any space whose dual is
κ-regular

Note: AFKT:’21 obtained same rates for 1 < p ≤ 2 nonsmooth case,
but their oracle complexity is superlinear in n

21



Nonconvex Losses



DP Stochastic Nonconvex Optimization

• Vanishing excess risk is provably hard
• Stationarity measures:

• Unconstrained smooth: EA,S‖∇FD(A(S))‖∗
[Wang, Chen & Xu:’19; Wang, Xu:’19; Song, Steinke, Thakkar & Thakurta:’21; Zhou, Chen, Hong & Wu:’20]

• Constrained smooth: EA,S supx∈X 〈∇FD(A(S)),A(S)− x〉
• Weakly convex (nonsmooth): close to a near-stationary point

Setting ℓp Setup Rate Linear Time?

Smooth
Constrained p = 1 log2/3 d

(nε)1/3
✓

1 < p ≤ 2 1
n1/3 +

(√
d

nε

)2/5
✓

Weakly Convex
(Nonsmooth) 1 ≤ p ≤ 2 1

n1/4 +
(√

d
nε

)1/3
No

[Bassily, G. & Menart:’21]
Open Problem: Lower bounds for stationarity?
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DP Stochastic Weakly Convex Optimization

• Key Observation: Weakly convex functions can be convexified
by strongly convex regularization

• Algorithm based on a sequence of stochastic proximal steps

prox1/β(xt) = argmin
y

{
FD(x) +

β

2
‖x− xt‖2

}
• Each subproblem solved with optimal risk by phased noisy
stochastic mirror-descent, with disjoint data batches [AFKT:’21]

• Guarantee: Randomly chosen iterate x̂ satisfies close to near
stationarity in expectation, for ϑ = Õ

(
1

n1/4 +
(√

d
nε

)1/3),
∃x ∈ X : ‖x̂− x‖ ≤ ϑ, inf

g∈∂FD(x)
sup
y∈X
〈g, x− y〉 ≤ ϑ

• O(n−1/4) is best rate known nonprivately
[Davis, Grimmer:’19; Davis, Drusvyatskiy:’19]

• Oracle complexity is Õ(min{n3/2, n2ε/
√
d})
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Summary



Summary

Conclusions

• Provide new algorithms for DP-SCO in ℓp-setups
• Novel and sharp lower bounds for DP-SCO in ℓp-setups
• Introduce new DP mechanism for regular normed spaces
• Extensions to stationary points for nonconvex settings

Future Directions

• What other sets, aside from polytopes, can avoid the
Ω̃(
√
d/[εn]) lower bound for DP-SCO?

• Universally optimal algorithm for DP-SCO for general norms?
• Oracle complexity for nonsmooth DP-SCO
• Lower bounds for nonconvex DP-SO

24



Summary

Conclusions

• Provide new algorithms for DP-SCO in ℓp-setups
• Novel and sharp lower bounds for DP-SCO in ℓp-setups
• Introduce new DP mechanism for regular normed spaces
• Extensions to stationary points for nonconvex settings

Future Directions

• What other sets, aside from polytopes, can avoid the
Ω̃(
√
d/[εn]) lower bound for DP-SCO?

• Universally optimal algorithm for DP-SCO for general norms?
• Oracle complexity for nonsmooth DP-SCO
• Lower bounds for nonconvex DP-SO

24



Thank you!
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