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Accelerated MRI

4x

undersampled

Goal:

estimate original image



Traditional approach: sparse recovery

̂x = arg min ∥Ax − y∥2
2 + λ∥x∥TV

Lustig et al. ``Sparse MRI..’’, 2007



Learning-based: Training end-to-end 

Jin et al. ``Deep convolutional neural network..’’, 2017 
Hammernick et al., ``Learning a variational network..”, 2018 

Sriram et al. ``End-to-end variational networks..’’, 2020



Recovery with un-trained network

̂θ = arg min
θ

∥AD(θ) − y∥2
2

̂x = D( ̂θ)

D

Ulyanov et al., ``Deep image prior’’, 2018 
Heckel and Hand., ``Deep decoder..”, 2019 

Van Veen et al., ``Compressed sensing with DIP..”, 2018



Performance comparison

image quality

sparsity based ok

un-trained network good

end-to-end network (U-net, VarNet) very good





data source

training set

test set

model

SSIM = 0.9

PSNR = 40dB

concern: might not reflect performance in practice



Robustness concerns

adversarial robustness

clean recon perturbed recon

distribution shifts fine details

trained on

brains

trained on

knees

original* reconstruction*

*Knoll et al. ``Advancing machine learning for MR image 
reconstruction’’, 2020  

;



i: Adversarial robustness



``Deep learning typically 
yields unstable methods 
for image reconstruction’'

``There are cases where DL attains 
lower errors than sparse regularization, 
but in doing so it is unstable.’'






̂z = arg max
∥z∥2≤ϵ

∥Ψ(Ax*) − Ψ(Ax* + z)∥2
2

Ψ : reconstruction algorithm (DNN, l1-minimization, DeepDecoder)

Adversarial perturbation:



Adversarial perturbations

Un-trained methods are as unstable as trained ones!

0 0.02 0.04 0.06 0.08
0

5

10

15

✏

P
SN

R
(d

B
)

U-net perturbation

0 0.02 0.04 0.06 0.08

✏

`1-min. perturbation

0 0.02 0.04 0.06 0.08

✏

VarNet perturbation

0 0.02 0.04 0.06 0.08

✏

ConvDecoder perturbation

ConvDecoder
`1
VarNet
U-net

Figure 3: Both trained and un-trained reconstruction methods are vulnerable to small
adversarial perturbations. Performance loss as a function of the perturbation strength, ✏ =
kperturbationk2

kk�spacek2
, for all methods. In each plot, the perturbations are obtained by attacking one method

(specified in the plot title), and are applied to all methods. The results are averaged over 10
randomly-chosen proton density knee images from the fastMRI validation set. Shaded areas denote
95% confidence intervals.

and reconstruct with all four methods. Figure 3 shows the results and the supplement contains
reconstructions examples.
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ii: Recovery of small features



Recovery of small features
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iii: Robustness to distribution shifts



Dataset shift

Differences: 
- frequency resolution: 320x320 vs 640x360 
- slice thickness, lower SNR 

FastMRI (NYU)

training set

Stanford test set

Stanford dataset

FastMRI test set



Reconstruction methods

training / tuning

sparsity based 1 parameter

un-trained network 5 parameters

end-to-end network (U-net, VarNet) 50 000 000 parameters



What we might expect

SSIM on FastMRI
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Dataset shift
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Anatomy shift
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Adversarially filtered shift
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 For classification problems, ``natural distribution 
shifts are an open research problem'' 

�� �� �� �� �� ��
,PDJH1HW��WRS������

��

��

��

��

��

��

��

��

,P
DJ
H1

HW
9�

��W
RS
��
���

�

'LVWULEXWLRQ�6KLIW�WR�,PDJH1HW9�

�� �� �� �� �� �� �� ��
,PDJH1HW��FODVV�VXEVDPSOHG���WRS������

��

��

��

��
��
��
��
��
��
��
��
��

2E
MH
FW
1H

W��
WR
S�
��
��
�

'LVWULEXWLRQ�6KLIW�WR�2EMHFW1HW

�� �� �� �� �� �� ��
,PDJH1HW��FODVV�VXEVDPSOHG���WRS������

��
��
��

��

��

��

��

��

��

,P
DJ
H1

HW
�9
LG
�5
RE
XV
W��
SP

��
���

� 'LVWULEXWLRQ�6KLIW�WR�,PDJH1HW�9LG�$QFKRUV

�� �� �� �� ��
,PDJH1HW��FODVV�VXEVDPSOHG���WRS������

��

��

��

��

��

��

<7
%%

�5
RE
XV
W��
SP

��
���

�

'LVWULEXWLRQ�6KLIW�WR�<7%%�$QFKRUV

\� �[
6WDQGDUG�WUDLQLQJ

5REXVWQHVV�LQWHUYHQWLRQ
7UDLQHG�ZLWK�PRUH�GDWD

/LQHDU�ILW

Figure 2: Model accuracies on the four natural dataset shifts: ImageNetV2 (top left),
ObjectNet (top right), ImageNet-Vid-Robust-anchor (bottom left), and YTBB-Robust-
anchor (bottom right). These plots demonstrate that the standard test accuracy (x-axis)
is a reliable predictor for the test accuracy under distribution shift (y-axis), especially for
models trained without a robustness intervention. The notable outliers to this trend are
some models trained on substantially more data. For ObjectNet, ImageNet-Vid-Robust-
anchor, and YTBB-Robust-anchor, we show the accuracy on a subset of the ImageNet
classes on the x-axis to match the label space of the target task (y-axis). Each data
point corresponds to one model in our testbed and is shown with 99.5% Clopper-Pearson
confidence intervals. The axes were adjusted using logit scaling and the linear fit was
computed in the scaled space on only the standard models. The red shaded region is a
95% confidence region for the linear fit from 1,000 bootstrap samples.

and ImageNet-Vid-Robust with respective r2 scores of 1.00, 0.95, and 0.95, but is more noisy for
YTBB-Robust (r2 = 0.83). The noisy fit on YTBB-Robust is likely due to the fact that the categories
in YTBB-Robust are not well aligned with those of ImageNet, where the models were trained [76].
Another potential reason is that the video test sets are significantly smaller (2,530 images in YTBB
and 1,109 images in ImageNet-Vid-Robust).
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Taori, Dave, Shankar, Carlini, Recht, and Schmidt, ``Measuring Robustness to Natural Distribution Shifts in Image Classification’'



Test time training

Training: minimizeθ ∑
i

∥xi − fθ(yi)∥1 + ∥yi − Afθ(yi)∥1

Inference: 1/ Test Time Training:  minimizeθ∥y − Afθ(y)∥
2/ Reconstruct:  ̂x = fθ(y)

supervised loss self-supervised loss



Closing the distribution shift performance gap for  
anatomy shift

SSIM

train on P test on Q - 0.852

train on Q test on Q - 0.919

0.922 - train on Q test on Q + TTT

0.923 - train on P test on Q + TTT

performance gap

performance gap after TTT

Test Time Training closes 99% of performance gap!



Closing the distribution shift performance gap 

Gap closed for VarNet: 99% 87% 96% 97%



Conclusions
• No evidence that DNNs are fundamentally more susceptible to 

adversarial perturbations than sparsity based method


• Recovery of fine details is strongly correlated with overall reconstruction 
quality


• Strong linear correlation of in-distribution and out-of-distribution 
generalization


• Accuracy is a good measure for performance


• Test Time Training closes the distribution shift performance gap 
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Thank you!



Abstract

Measuring Robustness in Deep Learning Based Compressive Sensing

Traditional algorithms for reconstructing images from few and noisy measurements are handcrafted. Today, algorithms in 
form of deep networks learned on training data outperform traditional, handcrafted algorithms in computational cost and 
image quality. 
However, recent works have raised concerns that deep-learning-based image reconstruction methods are sensitive to 
perturbations and are less robust than traditional, handcrafted, methods: Neural networks may be sensitive to small, yet 
adversarially-selected perturbations, may perform poorly under distribution shifts, and may fail to recover small but 
important features in an image. To understand the sensitivity to such perturbations, we measured the robustness of a 
variety of deep network based and traditional methods. 
Perhaps surprisingly, in the context of accelerated magnetic resonance imaging, we find no evidence that deep learning 
based algorithms are less robust than classical, un-trained methods. Even for natural distribution shifts, we find that 
classical algorithms with a single hyper-parameter tuned on a training set compromise as much in performance than a 
neural network with 50 million parameters. Our results indicate that the state-of-the-art deep-learning-based image 
reconstruction methods provide improved performance than traditional methods without compromising robustness.


